Human-Object Interaction from Human-Level Instructions
- URL: http://arxiv.org/abs/2406.17840v2
- Date: Wed, 11 Dec 2024 04:37:15 GMT
- Title: Human-Object Interaction from Human-Level Instructions
- Authors: Zhen Wu, Jiaman Li, Pei Xu, C. Karen Liu,
- Abstract summary: We propose the first complete system for synthesizing human-object interactions for object manipulation in contextual environments.
We leverage large language models (LLMs) to interpret the input instructions into detailed execution plans.
Unlike prior work, our system is capable of generating detailed finger-object interactions, in seamless coordination with full-body movements.
- Score: 17.10279738828331
- License:
- Abstract: Intelligent agents must autonomously interact with the environments to perform daily tasks based on human-level instructions. They need a foundational understanding of the world to accurately interpret these instructions, along with precise low-level movement and interaction skills to execute the derived actions. In this work, we propose the first complete system for synthesizing physically plausible, long-horizon human-object interactions for object manipulation in contextual environments, driven by human-level instructions. We leverage large language models (LLMs) to interpret the input instructions into detailed execution plans. Unlike prior work, our system is capable of generating detailed finger-object interactions, in seamless coordination with full-body movements. We also train a policy to track generated motions in physics simulation via reinforcement learning (RL) to ensure physical plausibility of the motion. Our experiments demonstrate the effectiveness of our system in synthesizing realistic interactions with diverse objects in complex environments, highlighting its potential for real-world applications.
Related papers
- HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotion is a framework that learns, selects and plans behaviors based on tasks in different scenarios.
We combine reinforcement learning with whole-body optimization to generate motion for 38 actuated joints.
Experiments in simulation and real-world show that learned motions can efficiently adapt to new tasks.
arXiv Detail & Related papers (2024-06-20T18:21:24Z) - InsActor: Instruction-driven Physics-based Characters [65.4702927454252]
In this paper, we present a principled generative framework that produces instruction-driven animations of physics-based characters.
Our framework empowers InsActor to capture complex relationships between high-level human instructions and character motions.
InsActor achieves state-of-the-art results on various tasks, including instruction-driven motion generation and instruction-driven waypoint heading.
arXiv Detail & Related papers (2023-12-28T17:10:31Z) - ThinkBot: Embodied Instruction Following with Thought Chain Reasoning [66.09880459084901]
Embodied Instruction Following (EIF) requires agents to complete human instruction by interacting objects in complicated surrounding environments.
We propose ThinkBot that reasons the thought chain in human instruction to recover the missing action descriptions.
Our ThinkBot outperforms the state-of-the-art EIF methods by a sizable margin in both success rate and execution efficiency.
arXiv Detail & Related papers (2023-12-12T08:30:09Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - CG-HOI: Contact-Guided 3D Human-Object Interaction Generation [29.3564427724612]
We propose CG-HOI, the first method to generate dynamic 3D human-object interactions (HOIs) from text.
We model the motion of both human and object in an interdependent fashion, as semantically rich human motion rarely happens in isolation.
We show that our joint contact-based human-object interaction approach generates realistic and physically plausible sequences.
arXiv Detail & Related papers (2023-11-27T18:59:10Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
arXiv Detail & Related papers (2022-12-14T23:59:24Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.