論文の概要: GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs
- arxiv url: http://arxiv.org/abs/2404.00189v1
- Date: Fri, 29 Mar 2024 23:04:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:56:43.461328
- Title: GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs
- Title(参考訳): GPTA:LLMを用いたシナジスティックダウンストリームニューラルネットワーク強化のための生成プロンプトチューニングアシスタント
- Authors: Xiao Liu, Jiawei Zhang,
- Abstract要約: 本研究はGPTA(Large Language Model assistance training framework)を導入し,プレフィックスプロンプトによる下流タスクモデルのトレーニングを強化する。
LLMのデータ露出を最小限にすることで、下流タスクモデルトレーニングにLLMを適用する際のセキュリティと法的課題に対処する。
- 参考スコア(独自算出の注目度): 11.572835837392867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces GPTA, a Large Language Model assistance training framework, that enhances the training of downstream task models via prefix prompt. By minimizing data exposure to LLM, the framework addresses the security and legal challenges of applying LLM in downstream task model training. GPTA utilizes a new synergistic training approach, optimizing the downstream models with parameter gradients and LLMs with the novel ``dialogue gradient''. The framework not only demonstrates significant improvements in model performance across six NLP benchmark datasets, but also reduces overfitting in low-resource scenarios effectively. The detailed analyses further validate that our pioneer framework provides a cost-efficient and adaptive method for downstream task model training with LLM support.
- Abstract(参考訳): 本研究はGPTA(Large Language Model assistance training framework)を導入し,プレフィックスプロンプトによる下流タスクモデルのトレーニングを強化する。
LLMのデータ露出を最小限にすることで、下流タスクモデルトレーニングにLLMを適用する際のセキュリティと法的課題に対処する。
GPTAは,パラメータ勾配を用いた下流モデルの最適化と,新しい「対話勾配」を用いたLLMの最適化という,新たな相乗的学習手法を採用している。
このフレームワークは6つのNLPベンチマークデータセットにおけるモデルパフォーマンスの大幅な改善を示すだけでなく、低リソースシナリオのオーバーフィットを効果的に削減する。
より詳細な分析により,私達の先駆的なフレームワークが,LLMサポートによる下流タスクモデルトレーニングに費用効率と適応性を提供することを確認した。
関連論文リスト
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
本稿では,PEFTを組み込んだメタラーニングフレームワークを導入し,未知のタスクに容易に適応可能なモデルを学習する。
この設定では、適応可能なパラメータの集合を見つけるための標準再訓練の準最適性を示す。
次に、これらの理論的洞察をRoBERTaモデルの再訓練に適用し、ConvAI2データセット内の会話の継続を予測する。
論文 参考訳(メタデータ) (2024-10-29T17:24:18Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning [17.73193523921637]
大規模言語モデル(LLM)は、多様な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
LLMは通常、制御された微調整(SFT)を行い、その後、下流のアプリケーションで使用できるように調整する。
本稿では,PLMファインチューニングのための新しいPArallelトレーニングパラダイムであるPAFTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T20:11:37Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。