論文の概要: Empowering Interdisciplinary Insights with Dynamic Graph Embedding Trajectories
- arxiv url: http://arxiv.org/abs/2406.17963v2
- Date: Fri, 28 Jun 2024 06:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:00:13.984342
- Title: Empowering Interdisciplinary Insights with Dynamic Graph Embedding Trajectories
- Title(参考訳): 動的グラフ埋め込み軌道による学際的洞察の強化
- Authors: Yiqiao Jin, Andrew Zhao, Yeon-Chang Lee, Meng Ye, Ajay Divakaran, Srijan Kumar,
- Abstract要約: DyGETVizは動的グラフ(DG)を効果的に視覚化するための新しいフレームワーク
これらのグラフ内のマイクロレベルとマクロレベルの構造シフトをキャプチャし、複雑で大規模な動的グラフを表現する堅牢な方法を提供する。
DyGETVizの適用範囲は、民族学、疫学、金融学、遺伝学、言語学、コミュニケーション研究、社会学、国際関係など、多岐にわたる。
- 参考スコア(独自算出の注目度): 28.17297502534298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed DyGETViz, a novel framework for effectively visualizing dynamic graphs (DGs) that are ubiquitous across diverse real-world systems. This framework leverages recent advancements in discrete-time dynamic graph (DTDG) models to adeptly handle the temporal dynamics inherent in dynamic graphs. DyGETViz effectively captures both micro- and macro-level structural shifts within these graphs, offering a robust method for representing complex and massive dynamic graphs. The application of DyGETViz extends to a diverse array of domains, including ethology, epidemiology, finance, genetics, linguistics, communication studies, social studies, and international relations. Through its implementation, DyGETViz has revealed or confirmed various critical insights. These include the diversity of content sharing patterns and the degree of specialization within online communities, the chronological evolution of lexicons across decades, and the distinct trajectories exhibited by aging-related and non-related genes. Importantly, DyGETViz enhances the accessibility of scientific findings to non-domain experts by simplifying the complexities of dynamic graphs. Our framework is released as an open-source Python package for use across diverse disciplines. Our work not only addresses the ongoing challenges in visualizing and analyzing DTDG models but also establishes a foundational framework for future investigations into dynamic graph representation and analysis across various disciplines.
- Abstract(参考訳): 我々は動的グラフ(DG)を効果的に視覚化する新しいフレームワークであるDyGETVizを開発した。
このフレームワークは、離散時間動的グラフ(DTDG)モデルの最近の進歩を利用して、動的グラフに固有の時間的ダイナミクスを順応的に扱う。
DyGETVizは、これらのグラフ内のマイクロレベルとマクロレベルの構造シフトを効果的にキャプチャし、複雑で大規模な動的グラフを表現する堅牢な方法を提供する。
DyGETVizの適用範囲は、民族学、疫学、金融学、遺伝学、言語学、コミュニケーション研究、社会学、国際関係など、多岐にわたる。
実装を通じて、DyGETVizは様々な重要な洞察を明らかにし、確認した。
これには、コンテンツ共有パターンの多様性とオンラインコミュニティ内の特殊化の度合い、数十年にわたるレキシコンの時系列的進化、老化に関連する遺伝子や非関連遺伝子によって示される異なる軌跡が含まれる。
重要なことは、DyGETVizは動的グラフの複雑さを単純化することによって、非ドメインの専門家への科学的発見のアクセシビリティを高めることである。
私たちのフレームワークは、さまざまな分野にまたがって使用するためのオープンソースのPythonパッケージとしてリリースされています。
本研究は,DTDGモデルの可視化と解析における現在進行中の課題に対処するだけでなく,様々な分野にわたる動的グラフ表現と解析に関する今後の研究の基盤となる枠組みを確立する。
関連論文リスト
- Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
グラフ学習の文脈における分布変化に対処する最新のアプローチ、戦略、洞察のレビューと要約を提供する。
既存のグラフ学習手法を,グラフ領域適応学習,グラフ配布学習,グラフ連続学習など,いくつかの重要なシナリオに分類する。
本稿では,この領域における現状を体系的に分析し,分散シフト下でのグラフ学習の可能性と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-02-26T07:52:40Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
動的グラフ表現は新しい機械学習問題として現れた。
本稿では,動的グラフ学習に関連する問題とモデルをレビューすることを目的とする。
論文 参考訳(メタデータ) (2023-04-12T09:39:17Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph
Learning [114.72818205974285]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - EXPERT: Public Benchmarks for Dynamic Heterogeneous Academic Graphs [5.4744970832051445]
グラフ予測タスクのために開発されたモデルの有効性を検証するために,大規模で動的に異種な学術グラフを提案する。
我々の新しいデータセットは、人工知能(AI)と核拡散(NN)の2つのコミュニティにわたる科学出版物から抽出された文脈情報と内容情報の両方をカバーしている。
論文 参考訳(メタデータ) (2022-04-14T19:43:34Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
DYnamic graph(TADDY)のためのトランスフォーマーを用いた新しい異常検出フレームワークを提案する。
本フレームワークは,進化するグラフストリームにおいて,各ノードの構造的役割と時間的役割をよりよく表現するための包括的ノード符号化戦略を構築する。
提案するTADDYフレームワークは,4つの実世界のデータセットに対して,最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-18T02:27:19Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
時系列グラフネットワーク(TGN)は,時系列イベントのシーケンスとして表される動的グラフの深層学習のための汎用的で効率的なフレームワークである。
メモリモジュールとグラフベースの演算子を組み合わせた新しい組み合わせにより、TGNは、計算効率が向上した以前のアプローチを大幅に上回ることができる。
論文 参考訳(メタデータ) (2020-06-18T16:06:18Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。