論文の概要: Real-time Structure Flow
- arxiv url: http://arxiv.org/abs/2406.18031v1
- Date: Wed, 26 Jun 2024 03:01:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:48:10.432674
- Title: Real-time Structure Flow
- Title(参考訳): リアルタイム構造流れ
- Authors: Juan David Adarve, Robert Mahony,
- Abstract要約: 構造フローは、所定のピクセルにおけるシーンの角3次元速度である。
構造フローは部分微分方程式(PDE)の形でエレガントな進化モデルを示す。
我々はこの構造を利用して、画像と深さの測定を用いて、構造の流れをリアルタイムで計算する予測器更新アルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces the structure flow field; a flow field that can provide high-speed robo-centric motion information for motion control of highly dynamic robotic devices and autonomous vehicles. Structure flow is the angular 3D velocity of the scene at a given pixel. We show that structure flow posses an elegant evolution model in the form of a Partial Differential Equation (PDE) that enables us to create dense flow predictions forward in time. We exploit this structure to design a predictor-update algorithm to compute structure flow in real time using image and depth measurements. The prediction stage takes the previous estimate of the structure flow and propagates it forward in time using a numerical implementation of the structure flow PDE. The predicted flow is then updated using new image and depth data. The algorithm runs up to 600 Hz on a Desktop GPU machine for 512x512 images with flow values up to 8 pixels. We provide ground truth validation on high-speed synthetic image sequences as well as results on real-life video on driving scenarios.
- Abstract(参考訳): 本稿では,ロボットと自律走行車の移動制御のための高速なロボット中心モーション情報を提供する構造流れ場について紹介する。
構造フローは、所定のピクセルにおけるシーンの角3次元速度である。
構造フローは部分微分方程式 (Partial Differential Equation, PDE) の形でエレガントな進化モデルを持ち, 時間内に高密度な流れを予測できることを示す。
我々はこの構造を利用して、画像と深さの測定を用いて、構造の流れをリアルタイムで計算する予測器更新アルゴリズムを設計する。
予測段階は、構造フローPDEの数値的な実装を用いて、前回の構造フローの見積を行い、時間内に伝播する。
予測フローは、新しい画像と深さデータを使って更新される。
このアルゴリズムは、最大8ピクセルのフロー値を持つ512x512イメージのために、Desktop GPUマシン上で最大600Hzで動作する。
本研究では,高速合成画像列の地上真実検証と実写映像の運転シナリオに関する結果について述べる。
関連論文リスト
- An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorldは、分離されたダイナミックフローとイメージアシストトレーニング戦略を活用する、効率的な3D占有世界モデルである。
提案モデルでは, 静止ボクセルはポーズ変換により容易に得られるのに対し, 既存のボクセルフローを用いて既存の観測を歪曲することで, 将来のダイナミックボクセルを予測できる。
論文 参考訳(メタデータ) (2024-12-18T12:10:33Z) - Driv3R: Learning Dense 4D Reconstruction for Autonomous Driving [116.10577967146762]
マルチビュー画像シーケンスからフレーム単位のポイントマップを直接回帰するフレームワークであるDriv3Rを提案する。
我々は4次元フロー予測器を用いてシーン内の移動物体を識別し、これらの動的領域の再構築をより重視する。
Driv3Rは4D動的シーン再構築において従来のフレームワークより優れており、推論速度は15倍高速である。
論文 参考訳(メタデータ) (2024-12-09T18:58:03Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
フローベースモデルはサンプリングプロセス中により直線的なサンプリング軌道を生成する傾向にある。
擬似修正器やサンプル認識コンパイルなどいくつかの手法を導入し,推論時間をさらに短縮する。
FlowTurboはImageNet上で100(ms/img)で2.12FID、38(ms/img)で3.93FIDに達する
論文 参考訳(メタデータ) (2024-09-26T17:59:51Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - DEFLOW: Self-supervised 3D Motion Estimation of Debris Flow [19.240172015210586]
土石流の3次元運動推定モデルであるDefLOWを提案する。
我々は、シーンの帰納バイアスを組み込むために、新しいマルチレベルセンサー融合アーキテクチャとセルフスーパービジョンを採用する。
本モデルでは,我々のデータセット上での最先端の光学的流れと深度推定を実現し,デブリ流の運動推定を完全に自動化する。
論文 参考訳(メタデータ) (2023-04-05T16:40:14Z) - BlinkFlow: A Dataset to Push the Limits of Event-based Optical Flow Estimation [76.66876888943385]
イベントカメラは、高時間精度、低データレート、高ダイナミックレンジ視覚知覚を提供する。
イベントベース光フローのための大規模データを高速に生成するための新しいシミュレータBlinkSimを提案する。
論文 参考訳(メタデータ) (2023-03-14T09:03:54Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
スパイキングカメラは、特に高速シーンのモーション推定において、現実の応用において大きな可能性を秘めている。
光フロー推定は画像ベースおよびイベントベースの視覚において顕著な成功を収めているが、既存の手法はスパイクカメラからのスパイクストリームに直接適用することはできない。
本稿では、スパイキングカメラのための光フロー推定のための新しいディープラーニングパイプラインSCFlowについて述べる。
論文 参考訳(メタデータ) (2021-10-08T06:16:45Z) - OmniFlow: Human Omnidirectional Optical Flow [0.0]
我々はomniflow: a new synthetic omnidirectional human optical flow datasetを提案する。
レンダリングエンジンに基づいて、テクスチャルーム、キャラクター、アクション、オブジェクト、イルミネーション、モーションボケを備えた自然主義的な3D屋内環境を作成します。
シミュレーションは、家庭内活動の出力画像と、それに対応する前方および後方の光学的流れを有する。
論文 参考訳(メタデータ) (2021-04-16T08:25:20Z) - Predicting the flow field in a U-bend with deep neural networks [0.0]
本稿では計算流体力学(CFD)と深部ニューラルネットワークに基づく,異なる歪んだU字管内の流れ場を予測することを目的とした研究について述べる。
この研究の主な動機は、流体力学的船体最適化プロセスにおけるディープラーニングパラダイムの正当化に関する洞察を得ることであった。
論文 参考訳(メタデータ) (2020-10-01T09:03:02Z) - Aggressive Perception-Aware Navigation using Deep Optical Flow Dynamics
and PixelMPC [21.81438321320149]
我々は,光学フローとロボットダイナミクスを組み合わせた深部光学フロー(DOF)ダイナミクスを導入する。
DOFダイナミクスを用いて、MPCはロボットの計画軌跡に関連画素の予測運動を明示的に組み込む。
DOFの実装はメモリ効率が良く、データ効率が良く、計算コストも安いので、MPCフレームワークでリアルタイムに計算することができる。
論文 参考訳(メタデータ) (2020-01-07T22:33:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。