論文の概要: Predicting the flow field in a U-bend with deep neural networks
- arxiv url: http://arxiv.org/abs/2010.00258v1
- Date: Thu, 1 Oct 2020 09:03:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:45:20.852684
- Title: Predicting the flow field in a U-bend with deep neural networks
- Title(参考訳): 深部ニューラルネットワークを用いたUベンド内の流れ場予測
- Authors: Gergely Hajgat\'o and B\'alint Gyires-T\'oth and Gy\"orgy Pa\'al
- Abstract要約: 本稿では計算流体力学(CFD)と深部ニューラルネットワークに基づく,異なる歪んだU字管内の流れ場を予測することを目的とした研究について述べる。
この研究の主な動機は、流体力学的船体最適化プロセスにおけるディープラーニングパラダイムの正当化に関する洞察を得ることであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes a study based on computational fluid dynamics (CFD) and
deep neural networks that focusing on predicting the flow field in differently
distorted U-shaped pipes. The main motivation of this work was to get an
insight about the justification of the deep learning paradigm in hydrodynamic
hull optimisation processes that heavily depend on computing turbulent flow
fields and that could be accelerated with models like the one presented. The
speed-up can be even several orders of magnitude by surrogating the CFD model
with a deep convolutional neural network. An automated geometry creation and
evaluation process was set up to generate differently shaped two-dimensional
U-bends and to carry out CFD simulation on them. This process resulted in a
database with different geometries and the corresponding flow fields
(2-dimensional velocity distribution), both represented on 128x128 equidistant
grids. This database was used to train an encoder-decoder style deep
convolutional neural network to predict the velocity distribution from the
geometry. The effect of two different representations of the geometry (binary
image and signed distance function) on the predictions was examined, both
models gave acceptable predictions with a speed-up of two orders of magnitude.
- Abstract(参考訳): 本稿では計算流体力学(CFD)と深部ニューラルネットワークに基づく,異なる歪んだU字管内の流れ場を予測することを目的とした研究について述べる。
この研究の主な動機は、流体力学的船体最適化プロセスにおける深層学習パラダイムの正当性についての洞察を得ることであり、それは乱流場の計算に大きく依存し、提示されたようなモデルによって加速される。
CFDモデルを深い畳み込みニューラルネットワークでシュロゲートすることで、スピードアップは数桁でもできる。
異なる形状の2次元U-ベンドを生成し, CFDシミュレーションを行うために, 自動幾何生成・評価プロセスを構築した。
このプロセスでは、異なるジオメトリと対応する流れ場(2次元の速度分布)を持つデータベースが、128x128の等密度グリッド上に表現された。
このデータベースは、エンコーダ-デコーダスタイルのディープ畳み込みニューラルネットワークのトレーニングに使われ、幾何から速度分布を予測する。
2つの異なる幾何学的表現(双対像と符号付き距離関数)が予測に及ぼす影響を検討した。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Finite volume method network for acceleration of unsteady computational
fluid dynamics: non-reacting and reacting flows [0.0]
CFDシミュレーションを高速化するために,ユニークなネットワークアーキテクチャと物理インフォームド損失関数を備えたニューラルネットワークモデルを開発した。
反応フローデータセットでは、このネットワークモデルの計算速度はCFDソルバの約10倍の速さで測定された。
論文 参考訳(メタデータ) (2021-05-07T15:33:49Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z) - Echo State Network for two-dimensional turbulent moist Rayleigh-B\'enard
convection [0.0]
モイストrayleigh-b'enard対流の進化を近似するためにエコー状態ネットワークを適用する。
我々のモデルは複雑なダイナミクスを学習することができると結論づける。
論文 参考訳(メタデータ) (2021-01-27T11:27:16Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。