論文の概要: MT2ST: Adaptive Multi-Task to Single-Task Learning
- arxiv url: http://arxiv.org/abs/2406.18038v2
- Date: Wed, 06 Nov 2024 10:14:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 03:29:47.730834
- Title: MT2ST: Adaptive Multi-Task to Single-Task Learning
- Title(参考訳): MT2ST:シングルタスク学習への適応型マルチタスク
- Authors: Dong Liu,
- Abstract要約: Multi-Task to Single-Task (MT2ST) は単語埋め込み訓練の効率と精度を大幅に向上させる新しい手法である。
実験により,MT2STはシングルタスク学習と比較してトレーニング時間を67%短縮できることが示された。
- 参考スコア(独自算出の注目度): 7.307436175842646
- License:
- Abstract: The conventional training approaches often face challenges in balancing the breadth of multi-task learning (MTL) with the depth of single-task learning (STL). To address this issue, we introduce the Multi-Task to Single-Task (MT2ST) framework, a groundbreaking approach that can combine the generalizability of MTL with the precision of STL. Our work include two strategies: 'Diminish' and 'Switch'. 'Diminish' Strategy will gradually reduce the influence of auxiliary tasks, while the 'Switch' strategy involves a shift from multi-tasking to single-tasking at a specific timepoint at the training process. In this paper, we propose the Multi-Task to Single-Task (MT2ST) framework, a novel approach that significantly enhances the efficiency and accuracy of word embedding training while concurrently addressing prevalent issues such as overfitting. Our empirical studies demonstrate that MT2ST can reduce training time by 67% when contrasted with single-task learning approaches, and by 13% compared to traditional multi-task learning methods. These findings underscore MT2ST's potential to be a powerful tools for word embedding training acceleration. The code implementation is can be found at: https://github.com/NoakLiu/MT2ST-Word-Embeddings-Acceleration.
- Abstract(参考訳): 従来のトレーニングアプローチでは、マルチタスク学習(MTL)の幅とシングルタスク学習(STL)の深さのバランスをとる上で、しばしば課題に直面している。
この問題に対処するために,Multi-Task to Single-Task (MT2ST) フレームワークを導入する。
私たちの活動には、"Diminish"と"Switch"の2つの戦略があります。
「ダイミッシュ」
戦略は、補助的なタスクの影響を徐々に減らし、一方で「スイッチ」戦略は、トレーニングプロセスの特定の時点において、マルチタスクからシングルタスクへとシフトする。
本稿では,単語埋め込み訓練の効率と精度を大幅に向上させるとともに,過度な適合などの問題に対処する新しい手法であるMT2ST(Multi-Task to Single-Task)フレームワークを提案する。
実験により,MT2STは,従来のマルチタスク学習法と比較して,シングルタスク学習法と比較してトレーニング時間を67%短縮し,13%短縮できることが示された。
これらの知見は,単語埋め込み訓練促進のための強力なツールであるMT2STの可能性を裏付けるものである。
コードの実装は、https://github.com/NoakLiu/MT2ST-Word-Embeddings-Accelerationで見ることができる。
関連論文リスト
- Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
マルチタスク学習(MTL)は,複数のタスクを同時に予測する能力で注目されている。
マルチタスクネットワークにおけるタスク改善を強化する軽量フレームワークであるクロスタスク親和性学習(CTAL)モジュールを紹介する。
以上の結果から,CNNとトランスフォーマーの両バックボーンに対して,シングルタスク学習よりもはるかに少ないパラメータを用いて,最先端のMTL性能を実証した。
論文 参考訳(メタデータ) (2024-01-20T05:31:47Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
マルチタスク学習(MTL)は,相互関係を利用して複数のタスクを同時に学習することを目的としている。
このレビューは、これらの課題に対処するために、異なる部分的な監視設定の下でMTLをどのように活用するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-25T20:08:41Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
マルチタスク学習(MTL)は、複数の学習タスクを単一のモデルにカプセル化し、それらのタスクを共同でよりよく学習できるようにする。
現在のMTLレギュレータは、1つのタスクだけを実行するためにさえ、ほぼすべてのモデルを起動する必要がある。
効率的なオンデバイスMTLを実現するためのモデル-アクセラレータ共設計フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T15:40:24Z) - Multi-Task Meta Learning: learn how to adapt to unseen tasks [4.287114092271669]
本研究は,Multi-Task Learning(MTL)とメタラーニングという2つの学習パラダイムを統合する,MTML(Multi-task Meta Learning)を提案する。
基本的な考え方はマルチタスクモデルをトレーニングすることであり、例えば、目に見えないタスクを導入すると、より少ないステップで学習できると同時に、パフォーマンスを従来の単一タスク学習と同程度に向上させることができる。
MTMLは、NYU-v2データセットの4つのタスクのうち3つと、タスクノミーデータセットの4つのうち2つのタスクに対して、最先端の結果を達成する。
論文 参考訳(メタデータ) (2022-10-13T12:59:54Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - A Survey of Multi-task Learning in Natural Language Processing:
Regarding Task Relatedness and Training Methods [17.094426577723507]
自然言語処理(NLP)において,マルチタスク学習(MTL)がますます普及している。
共通点と相違点を活用することで、関連するタスクのパフォーマンスを向上させる。
トレーニングタスクの関連性に基づいてマルチタスク学習をどのように実装できるかは、まだよく理解されていない。
論文 参考訳(メタデータ) (2022-04-07T15:22:19Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
本稿では,多くの特殊マルチタスクを正規化の形式として解釈できることを示唆する理論解析について述べる。
標準正規化と安定化技術と組み合わせると、ユニタリスカラー化は複雑なマルチタスクの性能にマッチし、改善することを示す。
論文 参考訳(メタデータ) (2022-01-11T18:44:17Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
情報伝達や伝達のダイナミクスを、トレーニングを通して分析する。
論文 参考訳(メタデータ) (2020-10-29T08:25:43Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z) - Learning to Multi-Task Learn for Better Neural Machine Translation [53.06405021125476]
マルチタスク学習は、言語関連バイアスをニューラルネットワーク翻訳モデルに注入するエレガントなアプローチである。
本稿では,学習スケジュールの学習,マルチタスク学習のための新しいフレームワークを提案する。
実験の結果、自動学習したトレーニングスケジューラがベストと競い合っており、最大1.1BLEUスコアが向上している。
論文 参考訳(メタデータ) (2020-01-10T03:12:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。