論文の概要: Taxonomic Reasoning for Rare Arthropods: Combining Dense Image Captioning and RAG for Interpretable Classification
- arxiv url: http://arxiv.org/abs/2503.10886v1
- Date: Thu, 13 Mar 2025 21:18:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:09:27.222927
- Title: Taxonomic Reasoning for Rare Arthropods: Combining Dense Image Captioning and RAG for Interpretable Classification
- Title(参考訳): 希少な節足動物に対する分類学的推論:Dense Image CaptioningとRAGを組み合わせた解釈可能な分類法
- Authors: Nathaniel Lesperance, Sujeevan Ratnasingham, Graham W. Taylor,
- Abstract要約: 画像キャプションと検索拡張生成(RAG)を大規模言語モデル(LLM)と統合し,生物多様性モニタリングを強化する。
我々の発見は、生物多様性保護イニシアチブをサポートする現代のビジョン言語AIパイプラインの可能性を強調した。
- 参考スコア(独自算出の注目度): 12.923336716880506
- License:
- Abstract: In the context of pressing climate change challenges and the significant biodiversity loss among arthropods, automated taxonomic classification from organismal images is a subject of intense research. However, traditional AI pipelines based on deep neural visual architectures such as CNNs or ViTs face limitations such as degraded performance on the long-tail of classes and the inability to reason about their predictions. We integrate image captioning and retrieval-augmented generation (RAG) with large language models (LLMs) to enhance biodiversity monitoring, showing particular promise for characterizing rare and unknown arthropod species. While a naive Vision-Language Model (VLM) excels in classifying images of common species, the RAG model enables classification of rarer taxa by matching explicit textual descriptions of taxonomic features to contextual biodiversity text data from external sources. The RAG model shows promise in reducing overconfidence and enhancing accuracy relative to naive LLMs, suggesting its viability in capturing the nuances of taxonomic hierarchy, particularly at the challenging family and genus levels. Our findings highlight the potential for modern vision-language AI pipelines to support biodiversity conservation initiatives, emphasizing the role of comprehensive data curation and collaboration with citizen science platforms to improve species identification, unknown species characterization and ultimately inform conservation strategies.
- Abstract(参考訳): 気候変動の課題と節足動物の間での生物多様性の喪失という文脈では、生物画像からの自動分類が激しい研究対象となっている。
しかし、CNNやViTといったディープ・ニューラル・ビジュアル・アーキテクチャに基づく従来のAIパイプラインは、クラスの長いテールにおけるパフォーマンス低下や、予測を推論できないといった制限に直面している。
画像キャプションと検索拡張世代(RAG)を大型言語モデル(LLM)と統合し,生物多様性のモニタリングを強化し,希少で未知の節足動物を特徴付けることを特に約束する。
視覚・言語モデル(VLM)は、共通種の画像の分類において優れているが、RAGモデルは、分類学的特徴の明示的なテキスト記述と、外部ソースからの文脈的生物多様性テキストデータとを一致させることにより、希少な分類の分類を可能にする。
RAGモデルは、ナイーブ LLM と比較して、過信度を減らし、精度を高めることを約束しており、特に挑戦的な科や属レベルで、分類学的階層のニュアンスを捉えることが可能であることを示唆している。
我々の研究は、生物多様性保護活動を支援する現代のビジョン言語AIパイプラインの可能性を強調し、包括的データキュレーションと市民科学プラットフォームとの協力による種識別の改善、未知種の特徴付け、そして最終的に保全戦略を通知する役割を強調した。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本稿では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデル GENERator を提案する。
DNAの386Bbpからなる拡張データセットに基づいて、GENERatorは、確立されたベンチマークと新しく提案されたベンチマークの両方で最先端のパフォーマンスを実証する。
また、特に特定のアクティビティプロファイルを持つエンハンサーシーケンスを即応的に生成することで、シーケンス最適化において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data [0.06819010383838325]
カメラトラップは生態研究において大きな新しい機会を提供する。
現在の自動画像解析手法は、影響のある保存結果をサポートするために必要な文脈的豊かさを欠いていることが多い。
本稿では、深層学習に基づく視覚と言語モデルを組み合わせて、カメラトラップのデータを用いた生態報告を改善するための統合的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T15:28:52Z) - Adaptive High-Frequency Transformer for Diverse Wildlife Re-Identification [33.0352672906987]
Wildlife ReIDは視覚技術を利用して、異なるシナリオで野生動物の特定の個人を特定する。
野生生物ReIDのための統合された多種多種汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:16:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - TEPI: Taxonomy-aware Embedding and Pseudo-Imaging for Scarcely-labeled
Zero-shot Genome Classification [0.0]
種の遺伝コードまたはゲノムは、貴重な進化的、生物学的、系統学的情報をコードする。
従来のバイオインフォマティクスツールは顕著な進歩を遂げているが、スケーラビリティに欠け、計算コストも高い。
TEPI, 分類認識型埋め込み, Pseudo-Imaging を用いたゼロショット学習によりこの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-01-24T04:16:28Z) - Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs [31.22129440376567]
カメラトラップ画像に関連付けられた構造化コンテキストを利用して,カメラトラップにおける種分類タスクの分布外一般化を促進する。
野生動物の写真は、捕獲された時間と場所の詳細と、動物種に関する構造化された生物学的知識に関連付けられる。
マルチモーダル知識グラフにおけるリンク予測として種分類を変換する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-31T23:32:03Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。