論文の概要: On the Evaluation of Large Language Models in Unit Test Generation
- arxiv url: http://arxiv.org/abs/2406.18181v2
- Date: Wed, 25 Sep 2024 06:47:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:10:29.018459
- Title: On the Evaluation of Large Language Models in Unit Test Generation
- Title(参考訳): 単体テスト生成における大規模言語モデルの評価について
- Authors: Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou, Guangtai Liang, Qianxiang Wang, Junjie Chen,
- Abstract要約: 単体テストは、ソフトウェアコンポーネントの正しさを検証するために、ソフトウェア開発において不可欠な活動である。
LLM(Large Language Models)の出現は、ユニットテスト生成を自動化するための新しい方向性を提供する。
- 参考スコア(独自算出の注目度): 16.447000441006814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unit testing is an essential activity in software development for verifying the correctness of software components. However, manually writing unit tests is challenging and time-consuming. The emergence of Large Language Models (LLMs) offers a new direction for automating unit test generation. Existing research primarily focuses on closed-source LLMs (e.g., ChatGPT and CodeX) with fixed prompting strategies, leaving the capabilities of advanced open-source LLMs with various prompting settings unexplored. Particularly, open-source LLMs offer advantages in data privacy protection and have demonstrated superior performance in some tasks. Moreover, effective prompting is crucial for maximizing LLMs' capabilities. In this paper, we conduct the first empirical study to fill this gap, based on 17 Java projects, five widely-used open-source LLMs with different structures and parameter sizes, and comprehensive evaluation metrics. Our findings highlight the significant influence of various prompt factors, show the performance of open-source LLMs compared to the commercial GPT-4 and the traditional Evosuite, and identify limitations in LLM-based unit test generation. We then derive a series of implications from our study to guide future research and practical use of LLM-based unit test generation.
- Abstract(参考訳): 単体テストは、ソフトウェアコンポーネントの正しさを検証するために、ソフトウェア開発において不可欠な活動である。
しかし、手動でユニットテストを書くのは難しく、時間がかかる。
LLM(Large Language Models)の出現は、ユニットテスト生成を自動化するための新しい方向性を提供する。
既存の研究は主に、固定的なプロンプト戦略を持つクローズドソースのLLM(例:ChatGPT、CodeX)に焦点を当てており、様々なプロンプト設定が探索されていない先進的なオープンソースLLMの能力を残している。
特に、オープンソースのLLMは、データプライバシ保護のアドバンテージを提供し、いくつかのタスクにおいて優れたパフォーマンスを示している。
さらに、LLMの能力を最大化するためには、効果的なプロンプトが不可欠である。
本稿では、このギャップを埋めるための最初の実証的研究を行い、17のJavaプロジェクト、異なる構造とパラメータサイズを持つ5つの広く使われているオープンソースLCM、そして包括的な評価指標について述べる。
本研究は, 各種要因の有意な影響, GPT-4 や従来の Evosuite と比較してオープンソース LLM の性能を示すとともに, LLM による単体テスト生成の限界を明らかにすることを目的としている。
そこで本研究では,LLMを用いたユニット・テスト・ジェネレーションの今後の研究と実用化を導くために,本研究から一連の意味を導出する。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
大規模言語モデル(LLM)は、幅広い領域で研究と実践を変革してきた。
我々は,オープンソースのLCMのプログラミング課題に対する高品質なフィードバック生成における効率性を評価する。
論文 参考訳(メタデータ) (2024-07-05T21:44:11Z) - Large-scale, Independent and Comprehensive study of the power of LLMs for test case generation [11.056044348209483]
クラスやメソッドなどのコードモジュールのバグを特定するのに不可欠なユニットテストは、時間的制約のため、開発者によって無視されることが多い。
GPTやMistralのようなLarge Language Models (LLM)は、テスト生成を含むソフトウェア工学における約束を示す。
論文 参考訳(メタデータ) (2024-06-28T20:38:41Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - ChatGPT vs SBST: A Comparative Assessment of Unit Test Suite Generation [25.200080365022153]
本稿では,ChatGPT LLM と最先端 SBST ツール EvoSuite によるテストスイートの体系的比較を行う。
私たちの比較は、正確性、可読性、コードカバレッジ、バグ検出機能など、いくつかの重要な要素に基づいています。
論文 参考訳(メタデータ) (2023-07-02T15:09:40Z) - Impact of Large Language Models on Generating Software Specifications [14.88090169737112]
大規模言語モデル(LLM)は多くのソフトウェア工学のタスクにうまく適用されている。
ソフトウェアコメントやドキュメントからソフトウェア仕様を生成するLLMの機能を評価する。
論文 参考訳(メタデータ) (2023-06-06T00:28:39Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。