論文の概要: ChatGPT vs SBST: A Comparative Assessment of Unit Test Suite Generation
- arxiv url: http://arxiv.org/abs/2307.00588v1
- Date: Sun, 2 Jul 2023 15:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 18:35:43.870673
- Title: ChatGPT vs SBST: A Comparative Assessment of Unit Test Suite Generation
- Title(参考訳): ChatGPT vs SBST: 単体テストスイート生成の比較評価
- Authors: Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo
- Abstract要約: 本稿では,ChatGPT LLM と最先端 SBST ツール EvoSuite によるテストスイートの体系的比較を行う。
私たちの比較は、正確性、可読性、コードカバレッジ、バグ検出機能など、いくつかの重要な要素に基づいています。
- 参考スコア(独自算出の注目度): 25.200080365022153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have demonstrated
exceptional success in a wide range of general domain tasks, such as question
answering and following instructions. Moreover, LLMs have shown potential in
various software engineering applications. In this study, we present a
systematic comparison of test suites generated by the ChatGPT LLM and the
state-of-the-art SBST tool EvoSuite. Our comparison is based on several
critical factors, including correctness, readability, code coverage, and bug
detection capability. By highlighting the strengths and weaknesses of LLMs
(specifically ChatGPT) in generating unit test cases compared to EvoSuite, this
work provides valuable insights into the performance of LLMs in solving
software engineering problems. Overall, our findings underscore the potential
of LLMs in software engineering and pave the way for further research in this
area.
- Abstract(参考訳): 大規模言語モデル(llm)の最近の進歩は、質問応答や後続の指示など、幅広い一般的なドメインタスクにおいて例外的な成功を収めている。
さらに、LLMは様々なソフトウェア工学の応用の可能性を示している。
本研究では,ChatGPT LLM と最先端 SBST ツール EvoSuite によるテストスイートの系統比較を行った。
私たちの比較は、正確性、可読性、コードカバレッジ、バグ検出機能など、いくつかの重要な要素に基づいています。
ユニットテストケースを生成する際のllm(特にchatgpt)の長所と短所をevosuiteと比較することで、本研究はソフトウエアエンジニアリング問題を解決する上でllmのパフォーマンスに関する貴重な洞察を提供する。
全体として、ソフトウェア工学におけるLLMの可能性を強調し、この分野におけるさらなる研究の道を開いた。
関連論文リスト
- Large-scale, Independent and Comprehensive study of the power of LLMs for test case generation [11.056044348209483]
クラスやメソッドなどのコードモジュールのバグを特定するのに不可欠なユニットテストは、時間的制約のため、開発者によって無視されることが多い。
GPTやMistralのようなLarge Language Models (LLM)は、テスト生成を含むソフトウェア工学における約束を示す。
論文 参考訳(メタデータ) (2024-06-28T20:38:41Z) - An Empirical Study of Unit Test Generation with Large Language Models [16.447000441006814]
単体テストは、ソフトウェアコンポーネントの正しさを検証するために、ソフトウェア開発において不可欠な活動である。
LLM(Large Language Models)の出現は、ユニットテスト生成を自動化するための新しい方向性を提供する。
論文 参考訳(メタデータ) (2024-06-26T08:57:03Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - TESTEVAL: Benchmarking Large Language Models for Test Case Generation [15.343859279282848]
大規模言語モデル(LLM)を用いたテストケース生成のための新しいベンチマークであるTESTEVALを提案する。
オンラインプログラミングプラットフォームLeetCodeから210のPythonプログラムを収集し、全体的なカバレッジ、ターゲットライン/ブランチカバレッジ、ターゲットパスカバレッジという3つの異なるタスクを設計します。
特定のプログラム行/ブランチ/パスをカバーするテストケースを生成することは、現在のLLMでは依然として困難である。
論文 参考訳(メタデータ) (2024-06-06T22:07:50Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBenchは、ソフトウェア開発ライフサイクルのさまざまな段階にわたる大規模言語モデル(LLM)を評価するベンチマークである。
GPT-4-Turboを含む現在のLLMは、DevBench内での課題の解決に失敗している。
本研究は,LLMを現実のプログラミングアプリケーションに展開する上で,現実的な知見を提供するものである。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)コミュニティ内で大きな注目を集めています。
本稿では,LSMに基づく研究の有効性に対する潜在的な脅威について,オープンな議論を開始する。
論文 参考訳(メタデータ) (2023-12-13T11:02:19Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。