論文の概要: Human-Free Automated Prompting for Vision-Language Anomaly Detection: Prompt Optimization with Meta-guiding Prompt Scheme
- arxiv url: http://arxiv.org/abs/2406.18197v3
- Date: Tue, 10 Sep 2024 09:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 22:52:03.543233
- Title: Human-Free Automated Prompting for Vision-Language Anomaly Detection: Prompt Optimization with Meta-guiding Prompt Scheme
- Title(参考訳): 視覚言語異常検出のための人間の自由な自動プロンプト:メタガイド型プロンプトスキームによるプロンプト最適化
- Authors: Pi-Wei Chen, Jerry Chun-Wei Lin, Jia Ji, Feng-Hao Yeh, Zih-Ching Chen, Chao-Chun Chen,
- Abstract要約: 事前学習された視覚言語モデル(VLM)は、数ショットの学習を通じて、様々な下流タスクに高い適応性を持つ。
従来の手法は、特定の異常なタイプの事前の知識を必要とする人為的なプロンプトに依存している。
我々のゴールは、データ駆動方式でプロンプトを最適に学習する、人間の自由なプロンプトベースの異常検出フレームワークを開発することである。
- 参考スコア(独自算出の注目度): 19.732769780675977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning, making prompt-based anomaly detection a promising approach. Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types. Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods, eliminating the need for human intervention. The primary challenge in this approach is the lack of anomalous samples during the training phase. Additionally, the Vision Transformer (ViT)-based image encoder in VLMs is not ideal for pixel-wise anomaly segmentation due to a locality feature mismatch between the original image and the output feature map. To tackle the first challenge, we have developed the Object-Attention Anomaly Generation Module (OAGM) to synthesize anomaly samples for training. Furthermore, our Meta-Guiding Prompt-Tuning Scheme (MPTS) iteratively adjusts the gradient-based optimization direction of learnable prompts to avoid overfitting to the synthesized anomalies. For the second challenge, we propose Locality-Aware Attention, which ensures that each local patch feature attends only to nearby patch features, preserving the locality features corresponding to their original locations. This framework allows for the optimal prompt embeddings by searching in the continuous latent space via backpropagation, free from human semantic constraints. Additionally, the modified locality-aware attention improves the precision of pixel-wise anomaly segmentation.
- Abstract(参考訳): 事前学習された視覚言語モデル(VLM)は、数ショットの学習を通じて様々な下流タスクに高度に適用可能であり、プロンプトベースの異常検出は有望なアプローチである。
従来の手法は、特定の異常なタイプの事前の知識を必要とする人為的なプロンプトに依存している。
我々のゴールは、データ駆動方式でプロンプトを最適に学習し、人間の介入の必要性をなくす、人間の自由なプロンプトベースの異常検出フレームワークを開発することである。
このアプローチの主な課題は、トレーニングフェーズにおける異常サンプルの欠如である。
さらに、VLMにおけるビジョントランスフォーマー(ViT)ベースの画像エンコーダは、元の画像と出力特徴マップとの局所性特徴ミスマッチによる画素ワイド異常セグメンテーションには理想的ではない。
最初の課題に取り組むため、我々は、トレーニング用異常サンプルを合成するオブジェクト指向異常生成モジュール(OAGM)を開発した。
さらに、MPTS(Meta-Guiding Prompt-Tuning Scheme)は、学習可能なプロンプトの勾配に基づく最適化方向を反復的に調整し、合成された異常に過度に適合しないようにする。
第2の課題として,ローカル性意識(Locality-Aware Attention)を提案する。各ローカルパッチ機能は,近傍のパッチ機能にのみ対応し,元のロケーションに対応するローカリティ機能を保持する。
このフレームワークは、人間の意味的な制約なしに、バックプロパゲーションを通じて連続的な潜伏空間を探索することで、最適なプロンプト埋め込みを可能にする。
さらに、修正された局所性認識アテンションにより、画素単位の異常セグメンテーションの精度が向上する。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - GlocalCLIP: Object-agnostic Global-Local Prompt Learning for Zero-shot Anomaly Detection [5.530212768657544]
本研究では,グローバルおよびローカルなプロンプトの学習を改善するために,局所的なコントラスト学習を導入し,各領域の異常パターンを効果的に検出する。
The generalization performance of GlocalCLIP in ZSAD were demonstrated on 15 real-world datasets from the industrial and medical domain。
論文 参考訳(メタデータ) (2024-11-09T05:22:13Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Vision-Language Models Assisted Unsupervised Video Anomaly Detection [3.1095294567873606]
異常サンプルは教師なし学習手法における重要な課題を示す。
提案手法では,大規模言語モデルの推論能力を活用したモーダル事前学習モデルを用いる。
本手法は,高次元視覚特徴を低次元意味的特徴にマッピングすることにより,教師なし異常検出の解釈可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-09-21T11:48:54Z) - AnoPLe: Few-Shot Anomaly Detection via Bi-directional Prompt Learning with Only Normal Samples [6.260747047974035]
AnoPLeは、異常を事前に知ることなく、異常検出のために設計されたマルチモーダル・プロンプト学習手法である。
AnoPLe は MVTec-AD と VisA で 94.1% と 86.2% Image AUROC をそれぞれ記録した。
論文 参考訳(メタデータ) (2024-08-24T08:41:19Z) - Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
本稿では、事前学習された視覚言語モデル(VLM)に基づく、弱教師付きビデオ異常検出および局所化のための時間的プロンプト埋め込み(WSVADL)を学習する新しい手法を提案する。
提案手法は,WSVADLタスクの3つの公開ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-12T03:31:29Z) - Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection [18.414762007525137]
大規模視覚言語モデル(LVLM)は、自然言語で導かれる視覚表現の導出に長けている。
近年の研究では、ゼロショット視覚異常検出(VAD)の課題に取り組むためにLVLMを用いている。
統一モデルを用いてこれらの課題に対処するために設計された、トレーニング不要のアプローチであるALFAを提案する。
論文 参考訳(メタデータ) (2024-04-15T10:42:22Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。