Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study
- URL: http://arxiv.org/abs/2412.07737v1
- Date: Tue, 10 Dec 2024 18:34:08 GMT
- Title: Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study
- Authors: Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp, Nils Strodthoff,
- Abstract summary: Neoplasms remains a leading cause of mortality worldwide.
Current diagnostic methods are often invasive, costly, and inaccessible to many populations.
This study explores the application of machine learning models to analyze ECG features for the diagnosis of neoplasms.
- Score: 0.9503773054285559
- License:
- Abstract: Background: Neoplasms remains a leading cause of mortality worldwide, with timely diagnosis being crucial for improving patient outcomes. Current diagnostic methods are often invasive, costly, and inaccessible to many populations. Electrocardiogram (ECG) data, widely available and non-invasive, has the potential to serve as a tool for neoplasms diagnosis by using physiological changes in cardiovascular function associated with neoplastic prescences. Methods: This study explores the application of machine learning models to analyze ECG features for the diagnosis of neoplasms. We developed a pipeline integrating tree-based models with Shapley values for explainability. The model was trained and internally validated and externally validated on a second large-scale independent external cohort to ensure robustness and generalizability. Findings: The results demonstrate that ECG data can effectively capture neoplasms-associated cardiovascular changes, achieving high performance in both internal testing and external validation cohorts. Shapley values identified key ECG features influencing model predictions, revealing established and novel cardiovascular markers linked to neoplastic conditions. This non-invasive approach provides a cost-effective and scalable alternative for the diagnosis of neoplasms, particularly in resource-limited settings. Similarly, useful for the management of secondary cardiovascular effects given neoplasms therapies. Interpretation: This study highlights the feasibility of leveraging ECG signals and machine learning to enhance neoplasms diagnostics. By offering interpretable insights into cardio-neoplasms interactions, this approach bridges existing gaps in non-invasive diagnostics and has implications for integrating ECG-based tools into broader neoplasms diagnostic frameworks, as well as neoplasms therapy management.
Related papers
- Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.
We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.
SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.
This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.
Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - Electrocardiogram-based diagnosis of liver diseases: an externally validated and explainable machine learning approach [0.9503773054285559]
Liver diseases are a major global health concern, often diagnosed using resource-intensive methods.
This study applies machine learning models to ECG data for the diagnosis of liver diseases.
arXiv Detail & Related papers (2024-12-04T21:11:34Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation [0.0]
Foundation models (FM) are machine or deep learning models trained on diverse data and applicable to broad use cases.
FM offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis.
This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice.
arXiv Detail & Related papers (2024-06-26T10:51:44Z) - Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
Using foundation models enhanced by self-supervised learning (SSL) methods presents an innovative approach to electrocardiogram (ECG) analysis.
This study comprehensively evaluates foundation models for ECGs, leveraging SSL methods, including generative and contrastive learning.
We developed a Hybrid Learning (HL) for foundation models that improve the precision and reliability of cardiac diagnostics.
arXiv Detail & Related papers (2024-06-26T02:24:13Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Towards Enabling Cardiac Digital Twins of Myocardial Infarction Using
Deep Computational Models for Inverse Inference [6.447210290674733]
We present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS.
The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features.
arXiv Detail & Related papers (2023-07-10T08:54:12Z) - Meta-information-aware Dual-path Transformer for Differential Diagnosis
of Multi-type Pancreatic Lesions in Multi-phase CT [41.199716328468895]
We develop a dual-path transformer to exploit the feasibility of classification and segmentation of pancreatic lesions.
The proposed method consists of a CNN-based segmentation path (S-path) and a transformer-based classification path (C-path)
Our results show that our method can enable accurate classification and segmentation of the full taxonomy of pancreatic lesions.
arXiv Detail & Related papers (2023-03-02T03:34:28Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.