Trade-off between Gradient Measurement Efficiency and Expressivity in Deep Quantum Neural Networks
- URL: http://arxiv.org/abs/2406.18316v2
- Date: Wed, 28 Aug 2024 09:42:58 GMT
- Title: Trade-off between Gradient Measurement Efficiency and Expressivity in Deep Quantum Neural Networks
- Authors: Koki Chinzei, Shinichiro Yamano, Quoc Hoan Tran, Yasuhiro Endo, Hirotaka Oshima,
- Abstract summary: Quantum neural networks (QNNs) require an efficient training algorithm to achieve practical quantum advantages.
General QNNs lack an efficient gradient measurement algorithm, which poses a fundamental and practical challenge to realizing scalable QNNs.
We propose a general QNN ansatz called the stabilizer-logical product ansatz (SLPA), which can reach the upper limit of the trade-off inequality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural networks (QNNs) require an efficient training algorithm to achieve practical quantum advantages. A promising approach is the use of gradient-based optimization algorithms, where gradients are estimated through quantum measurements. However, general QNNs lack an efficient gradient measurement algorithm, which poses a fundamental and practical challenge to realizing scalable QNNs. In this work, we rigorously prove a trade-off between gradient measurement efficiency, defined as the mean number of simultaneously measurable gradient components, and expressivity in a wide class of deep QNNs, elucidating the theoretical limits and possibilities of efficient gradient estimation. This trade-off implies that a more expressive QNN requires a higher measurement cost in gradient estimation, whereas we can increase gradient measurement efficiency by reducing the QNN expressivity to suit a given task. We further propose a general QNN ansatz called the stabilizer-logical product ansatz (SLPA), which can reach the upper limit of the trade-off inequality by leveraging the symmetric structure of the quantum circuit. In learning an unknown symmetric function, the SLPA drastically reduces the quantum resources required for training while maintaining accuracy and trainability compared to a well-designed symmetric circuit based on the parameter-shift method. Our results not only reveal a theoretical understanding of efficient training in QNNs but also provide a standard and broadly applicable efficient QNN design.
Related papers
- A Novel Approach to Reduce Derivative Costs in Variational Quantum Algorithms [0.0]
Quantum Non-Demolition Measurement (QNDM) to efficiently estimate the gradients or the Hessians of a quantum observable.
This is a key step and a resource-demanding task when we want to minimize the cost function associated with a quantum observable.
In our detailed analysis, we account for all the resources needed to implement the QNDM approach with a fixed accuracy and compare them to the current state-of-the-art method.
A significant outcome of our study is the implementation of the QNDM method in Python, provided in the supplementary material citeqndm_gradient
arXiv Detail & Related papers (2024-04-02T19:06:01Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
Quantization has emerged as a promising technique to reduce the size of neural networks with comparable accuracy as their floating-point numbered counterparts.
We propose a novel and efficient formal verification approach for QNNs.
In particular, we are the first to propose an encoding that reduces the verification problem of QNNs into the solving of integer linear constraints.
arXiv Detail & Related papers (2022-12-10T03:00:29Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - On-chip QNN: Towards Efficient On-Chip Training of Quantum Neural
Networks [21.833693982056896]
We present On-chip QNN, the first experimental demonstration of practical on-chip QNN training with parameter shift.
We propose probabilistic gradient pruning to firstly identify gradients with potentially large errors and then remove them.
The results demonstrate that our on-chip training achieves over 90% and 60% accuracy for 2-class and 4-class image classification tasks.
arXiv Detail & Related papers (2022-02-26T22:27:36Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase.
We provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees.
arXiv Detail & Related papers (2021-12-30T10:27:08Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
Fully quantized training (FQT) uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model.
One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties.
arXiv Detail & Related papers (2020-10-27T13:57:33Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Trainability of Dissipative Perceptron-Based Quantum Neural Networks [0.8258451067861933]
We analyze the gradient scaling (and hence the trainability) for a recently proposed architecture that we called dissipative QNNs (DQNNs)
We find that DQNNs can exhibit barren plateaus, i.e., gradients that vanish exponentially in the number of qubits.
arXiv Detail & Related papers (2020-05-26T00:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.