Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
- URL: http://arxiv.org/abs/2406.18351v1
- Date: Wed, 26 Jun 2024 13:52:47 GMT
- Title: Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
- Authors: Zifan Liu, Xinran Li, Shibo Chen, Gen Li, Jiashuo Jiang, Jun Zhang,
- Abstract summary: Reinforcement learning (RL) has proven to be well-performed and general-purpose in the inventory control (IC) domain.
Online experience is expensive to acquire in real-world applications.
Online experience may not reflect the true demand due to the lost sales phenomenon typical in IC.
- Score: 12.832009040635462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has proven to be well-performed and general-purpose in the inventory control (IC). However, further improvement of RL algorithms in the IC domain is impeded due to two limitations of online experience. First, online experience is expensive to acquire in real-world applications. With the low sample efficiency nature of RL algorithms, it would take extensive time to train the RL policy to convergence. Second, online experience may not reflect the true demand due to the lost sales phenomenon typical in IC, which makes the learning process more challenging. To address the above challenges, we propose a decision framework that combines reinforcement learning with feedback graph (RLFG) and intrinsically motivated exploration (IME) to boost sample efficiency. In particular, we first take advantage of the inherent properties of lost-sales IC problems and design the feedback graph (FG) specially for lost-sales IC problems to generate abundant side experiences aid RL updates. Then we conduct a rigorous theoretical analysis of how the designed FG reduces the sample complexity of RL methods. Based on the theoretical insights, we design an intrinsic reward to direct the RL agent to explore to the state-action space with more side experiences, further exploiting FG's power. Experimental results demonstrate that our method greatly improves the sample efficiency of applying RL in IC. Our code is available at https://anonymous.4open.science/r/RLIMFG4IC-811D/
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Is Value Learning Really the Main Bottleneck in Offline RL? [70.54708989409409]
We show that the choice of a policy extraction algorithm significantly affects the performance and scalability of offline RL.
We propose two simple test-time policy improvement methods and show that these methods lead to better performance.
arXiv Detail & Related papers (2024-06-13T17:07:49Z) - Hybrid Inverse Reinforcement Learning [34.793570631021005]
inverse reinforcement learning approach to imitation learning is a double-edged sword.
We propose using hybrid RL -- training on a mixture of online and expert data -- to curtail unnecessary exploration.
We derive both model-free and model-based hybrid inverse RL algorithms with strong policy performance guarantees.
arXiv Detail & Related papers (2024-02-13T23:29:09Z) - The Virtues of Pessimism in Inverse Reinforcement Learning [38.98656220917943]
Inverse Reinforcement Learning is a powerful framework for learning complex behaviors from expert demonstrations.
It is desirable to reduce the exploration burden by leveraging expert demonstrations in the inner-loop RL.
We consider an alternative approach to speeding up the RL in IRL: emphpessimism, i.e., staying close to the expert's data distribution, instantiated via the use of offline RL algorithms.
arXiv Detail & Related papers (2024-02-04T21:22:29Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
Deep Reinforcement Learning (RL) is a powerful framework for solving complex real-world problems.
One way to tackle this problem is to prune neural networks leaving only the necessary parameters.
We close the gap between RL and single-shot pruning techniques and present a general pruning approach to the Offline RL.
arXiv Detail & Related papers (2021-12-31T18:10:02Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
We propose negative sampling strategy for training the RL component and combine it with supervised sequential learning.
Based on sampled (negative) actions (items), we can calculate the "advantage" of a positive action over the average case.
We instantiate SNQN and SA2C with four state-of-the-art sequential recommendation models and conduct experiments on two real-world datasets.
arXiv Detail & Related papers (2021-11-05T12:51:15Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.