Isospectrally Patterned Aperiodic Lattices
- URL: http://arxiv.org/abs/2406.18431v1
- Date: Wed, 26 Jun 2024 15:28:58 GMT
- Title: Isospectrally Patterned Aperiodic Lattices
- Authors: Peter Schmelcher,
- Abstract summary: We design and explore patterned aperiodic lattices consisting of coupled isospectral cells that vary across the lattice.
The characteristic localization length emerges due to a competition of the involved phase gradient and the coupling between the cells.
The fraction of localized versus delocalized eigenstates can be tuned by changing the gradient between the cells of the lattice.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design and explore patterned aperiodic lattices consisting of coupled isospectral cells that vary across the lattice. Each resulting band consists of three distinct energy domains with two mobility edges marking the transition from localized to delocalized states and vice versa. The characteristic localization length emerges due to a competition of the involved phase gradient and the coupling between the cells which allows us to understand the localization mechanism and its evolution. The fraction of localized versus delocalized eigenstates can be tuned by changing the gradient between the cells of the lattice. We outline the perspectives of investigation of this novel class of isospectrally patterned aperiodic lattices.
Related papers
- Topology and Spectrum in Measurement-Induced Phase Transitions [0.0]
We characterize topological phases in monitored quantum systems by their spectrum and many-body topological invariants.
Our work thus paves the way to extend the bulk-edge correspondence for topological phases from equilibrium to monitored quantum dynamics.
arXiv Detail & Related papers (2024-12-15T07:32:16Z) - Anderson localization induced by structural disorder [0.0]
We show that the Anderson localization transition occurs when the strength of the structural disorder is smoothly increased.
Our work identifies a new class of structurally disordered lattice models in which destructive interference of matter waves may inhibit transport and lead to a transition between metallic and localized phases.
arXiv Detail & Related papers (2024-11-15T14:58:10Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Structural phase transition and its critical dynamics from holography [0.0]
We introduce a gravitational lattice theory defined in an AdS$_3$ black hole background that provides a holographic dual description of the linear-to-zigzag structural phase transition.
The transition from the high-symmetry linear phase to the broken-symmetry doubly-degenerate phase can be driven by quenching the coupling between adjacent sites through the critical point.
An analysis of the equilibrium correlation length and relaxation time reveals mean-field critical exponents.
arXiv Detail & Related papers (2023-02-22T19:00:17Z) - Reentrant Localized Bulk and Localized-Extended Edge in Quasiperiodic
Non-Hermitian Systems [1.4638370614615002]
The localization is one of the active and fundamental research in topology physics.
We propose a novel systematic method to analyze the localization behaviors for the bulk and the edge, respectively.
arXiv Detail & Related papers (2022-07-01T02:49:23Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological Anderson insulators with different bulk states in
quasiperiodic chains [1.6530012863603747]
We investigate the topology and localization of one-dimensional Hermitian and non-Hermitian Su-Schrieffer-Heeger chains with quasiperiodic hopping modulations.
We show the presence of topological extended, intermediate, and localized phases due to the coexistence of independent topological and localization phase transitions.
arXiv Detail & Related papers (2022-01-04T05:32:43Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Scaling behavior in a multicritical one-dimensional topological
insulator [0.0]
We study a topological quantum phase transition with a second-order nonanalyticity of the ground-state energy.
We find that the critical exponents and scaling law defined with respect to the spectral gap remain the same regardless of the order of the transition.
arXiv Detail & Related papers (2020-08-18T21:05:14Z) - Phase diagram of the SU$(3)$ Fermi-Hubbard model with next-neighbor
interactions [0.0]
We explore the zero-temperature phase diagram of a one-dimensional gas composed of three-color fermions, which interact locally and with their next neighbors.
Using the density matrix renormalization group method and considering one-third filling, we characterize the ground state for several values of the parameters.
We show that the von Neumann block entropy and the fidelity susceptibility are useful for estimating the borders between the phases.
arXiv Detail & Related papers (2020-04-22T03:47:07Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.