GS-ROR$^2$: Bidirectional-guided 3DGS and SDF for Reflective Object Relighting and Reconstruction
- URL: http://arxiv.org/abs/2406.18544v3
- Date: Mon, 28 Apr 2025 03:45:45 GMT
- Title: GS-ROR$^2$: Bidirectional-guided 3DGS and SDF for Reflective Object Relighting and Reconstruction
- Authors: Zuo-Liang Zhu, Beibei Wang, Jian Yang,
- Abstract summary: We propose an SDF-aided Gaussian splatting for efficient optimization of the relighting model and a GS-guided SDF enhancement for high-quality geometry reconstruction.<n>Our method can further provide high-quality meshes for reflective objects at the cost of 17% extra training time.
- Score: 20.523085632567717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has shown a powerful capability for novel view synthesis due to its detailed expressive ability and highly efficient rendering speed. Unfortunately, creating relightable 3D assets and reconstructing faithful geometry with 3DGS is still problematic, particularly for reflective objects, as its discontinuous representation raises difficulties in constraining geometries. Volumetric signed distance field (SDF) methods provide robust geometry reconstruction, while the expensive ray marching hinders its real-time application and slows the training. Besides, these methods struggle to capture sharp geometric details. To this end, we propose to guide 3DGS and SDF bidirectionally in a complementary manner, including an SDF-aided Gaussian splatting for efficient optimization of the relighting model and a GS-guided SDF enhancement for high-quality geometry reconstruction. At the core of our SDF-aided Gaussian splatting is the mutual supervision of the depth and normal between blended Gaussians and SDF, which avoids the expensive volume rendering of SDF. Thanks to this mutual supervision, the learned blended Gaussians are well-constrained with a minimal time cost. As the Gaussians are rendered in a deferred shading mode, the alpha-blended Gaussians are smooth, while individual Gaussians may still be outliers, yielding floater artifacts. Therefore, we introduce an SDF-aware pruning strategy to remove Gaussian outliers located distant from the surface defined by SDF, avoiding floater issue. This way, our GS framework provides reasonable normal and achieves realistic relighting, while the mesh from depth is still problematic. Therefore, we design a GS-guided SDF refinement, which utilizes the blended normal from Gaussians to finetune SDF. With this enhancement, our method can further provide high-quality meshes for reflective objects at the cost of 17% extra training time.
Related papers
- Gaussian Splatting with Discretized SDF for Relightable Assets [20.523085632567717]
3D Gaussian splatting (3DGS) has shown its detailed expressive ability and highly efficient rendering speed in the novel view synthesis (NVS) task.<n>The application to inverse rendering still faces several challenges, as the discrete nature of Gaussian primitives makes it difficult to apply geometry constraints.<n>Recent works introduce the signed distance field (SDF) as an extra continuous representation to regularize the geometry defined by Gaussian primitives.<n>We introduce a discretized SDF to represent the continuous SDF in a discrete manner by encoding it within each Gaussian using a sampled value.
arXiv Detail & Related papers (2025-07-21T13:52:33Z) - GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction [51.99776072246151]
We propose a novel reconstruction method called GS-2DGS for reflective objects based on 2D Gaussian Splatting (2DGS)<n> Experimental results on synthetic and real datasets demonstrate that our method significantly outperforms Gaussian-based techniques in terms of reconstruction and relighting.
arXiv Detail & Related papers (2025-06-16T05:40:16Z) - G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - SplatSDF: Boosting Neural Implicit SDF via Gaussian Splatting Fusion [13.013832790126541]
We propose a novel neural implicit SDF called "SplatSDF" to fuse 3DGSandSDF-NeRF at an architecture level with significant boosts to geometric and photometric accuracy and convergence speed.
Our method outperforms state-of-the-art SDF-NeRF models on geometric and photometric evaluation by the time of submission.
arXiv Detail & Related papers (2024-11-23T06:35:19Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting [4.255847344539736]
We introduce a novel approach that combines octree-based implicit surface representations with Gaussian splatting.
Our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting.
arXiv Detail & Related papers (2024-06-26T09:29:56Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.
The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.
Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - GaussianShader: 3D Gaussian Splatting with Shading Functions for
Reflective Surfaces [45.15827491185572]
We present a novel method that applies a simplified shading function on 3D Gaussians to enhance the neural rendering in scenes with reflective surfaces.
Experiments show that GaussianShader strikes a commendable balance between efficiency and visual quality.
arXiv Detail & Related papers (2023-11-29T17:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.