Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery
- URL: http://arxiv.org/abs/2406.18552v1
- Date: Thu, 23 May 2024 19:00:38 GMT
- Title: Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery
- Authors: Yingying Fang, Zihao Jin, Xiaodan Xing, Simon Walsh, Guang Yang,
- Abstract summary: In medical imaging, discerning the rationale behind an AI model's predictions is crucial for evaluating its reliability.
We propose an explainable model that is equipped with both decision reasoning and feature identification capabilities.
By implementing our method, we can efficiently identify and visualise class-specific features leveraged by the data-driven model.
- Score: 6.1521675665532545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical imaging, particularly in early disease detection and prognosis tasks, discerning the rationale behind an AI model's predictions is crucial for evaluating the reliability of its decisions. Conventional explanation methods face challenges in identifying discernible decisive features in medical image classifications, where discriminative features are subtle or not immediately apparent. To bridge this gap, we propose an explainable model that is equipped with both decision reasoning and feature identification capabilities. Our approach not only detects influential image patterns but also uncovers the decisive features that drive the model's final predictions. By implementing our method, we can efficiently identify and visualise class-specific features leveraged by the data-driven model, providing insights into the decision-making processes of deep learning models. We validated our model in the demanding realm of medical prognosis task, demonstrating its efficacy and potential in enhancing the reliability of AI in healthcare and in discovering new knowledge in diseases where prognostic understanding is limited.
Related papers
- DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation [11.201840101870808]
We propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model.
By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions.
We validated our approach in the rigorous domain of medical prognosis tasks.
arXiv Detail & Related papers (2024-06-21T14:27:02Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision [12.306688233127312]
We introduce a human-in-the-loop framework in the model training process.
Our method can automatically discover confounding factors.
It is capable of learning confounding concepts using easily obtained concept exemplars.
arXiv Detail & Related papers (2023-03-02T01:02:18Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases.
We show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision.
arXiv Detail & Related papers (2021-01-26T23:37:30Z) - (Un)fairness in Post-operative Complication Prediction Models [20.16366948502659]
We consider a real-life example of risk estimation before surgery and investigate the potential for bias or unfairness of a variety of algorithms.
Our approach creates transparent documentation of potential bias so that the users can apply the model carefully.
arXiv Detail & Related papers (2020-11-03T22:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.