DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
- URL: http://arxiv.org/abs/2406.15182v2
- Date: Thu, 27 Jun 2024 03:54:50 GMT
- Title: DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
- Authors: Yingying Fang, Shuang Wu, Zihao Jin, Caiwen Xu, Shiyi Wang, Simon Walsh, Guang Yang,
- Abstract summary: We propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model.
By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions.
We validated our approach in the rigorous domain of medical prognosis tasks.
- Score: 11.201840101870808
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the field of medical imaging, particularly in tasks related to early disease detection and prognosis, understanding the reasoning behind AI model predictions is imperative for assessing their reliability. Conventional explanation methods encounter challenges in identifying decisive features in medical image classifications, especially when discriminative features are subtle or not immediately evident. To address this limitation, we propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model. By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions. Through our methodology, we efficiently identify features that influence decisions of the deep black box. We validated our approach in the rigorous domain of medical prognosis tasks, showcasing its efficacy and potential to enhance the reliability of deep learning models in medical image classification compared to existing interpretation methods. The code will be publicly available at https://github.com/ayanglab/DiffExplainer.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
In medical imaging, discerning the rationale behind an AI model's predictions is crucial for evaluating its reliability.
We propose an explainable model that is equipped with both decision reasoning and feature identification capabilities.
By implementing our method, we can efficiently identify and visualise class-specific features leveraged by the data-driven model.
arXiv Detail & Related papers (2024-05-23T19:00:38Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
Interpretable deep learning models have received widespread attention in the field of image recognition.
Many interpretability models that have been proposed still have problems of insufficient accuracy and interpretability in medical image disease diagnosis.
We propose feature-driven inference network (FeaInfNet) to solve these problems.
arXiv Detail & Related papers (2023-12-04T13:09:00Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision [12.306688233127312]
We introduce a human-in-the-loop framework in the model training process.
Our method can automatically discover confounding factors.
It is capable of learning confounding concepts using easily obtained concept exemplars.
arXiv Detail & Related papers (2023-03-02T01:02:18Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - A Question-Centric Model for Visual Question Answering in Medical
Imaging [3.619444603816032]
We present a novel Visual Question Answering approach that allows an image to be queried by means of a written question.
Experiments on a variety of medical and natural image datasets show that by fusing image and question features in a novel way, the proposed approach achieves an equal or higher accuracy compared to current methods.
arXiv Detail & Related papers (2020-03-02T10:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.