論文の概要: FLOW: Fusing and Shuffling Global and Local Views for Cross-User Human Activity Recognition with IMUs
- arxiv url: http://arxiv.org/abs/2406.18569v1
- Date: Mon, 3 Jun 2024 06:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 05:50:36.661832
- Title: FLOW: Fusing and Shuffling Global and Local Views for Cross-User Human Activity Recognition with IMUs
- Title(参考訳): FLOW:IMUを用いたユーザ間人間活動認識のためのグローバルおよびローカルビューの融合とシャッフル
- Authors: Qi Qiu, Tao Zhu, Furong Duan, Kevin I-Kai Wang, Liming Chen, Mingxing Nie, Mingxing Nie,
- Abstract要約: 慣性計測ユニット(IMU)センサーはヒト活動認識(HAR)に広く利用されている
この分布の相違の主な理由は、局所座標系におけるIMUセンサデータの表現にある。
IMUデータの特徴に基づいてグローバルなビュー表現を抽出する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 4.836846729251283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inertial Measurement Unit (IMU) sensors are widely employed for Human Activity Recognition (HAR) due to their portability, energy efficiency, and growing research interest. However, a significant challenge for IMU-HAR models is achieving robust generalization performance across diverse users. This limitation stems from substantial variations in data distribution among individual users. One primary reason for this distribution disparity lies in the representation of IMU sensor data in the local coordinate system, which is susceptible to subtle user variations during IMU wearing. To address this issue, we propose a novel approach that extracts a global view representation based on the characteristics of IMU data, effectively alleviating the data distribution discrepancies induced by wearing styles. To validate the efficacy of the global view representation, we fed both global and local view data into model for experiments. The results demonstrate that global view data significantly outperforms local view data in cross-user experiments. Furthermore, we propose a Multi-view Supervised Network (MVFNet) based on Shuffling to effectively fuse local view and global view data. It supervises the feature extraction of each view through view division and view shuffling, so as to avoid the model ignoring important features as much as possible. Extensive experiments conducted on OPPORTUNITY and PAMAP2 datasets demonstrate that the proposed algorithm outperforms the current state-of-the-art methods in cross-user HAR.
- Abstract(参考訳): 慣性測定ユニット(IMU)センサーは、可搬性、エネルギー効率、研究の関心の高まりにより、HAR(Human Activity Recognition)に広く利用されている。
しかし、IMU-HARモデルにとって重要な課題は、多様なユーザー間で堅牢な一般化性能を達成することである。
この制限は、個々のユーザ間でのデータ分散のかなりのバリエーションに起因する。
この分布の相違の主な理由は、局所座標系におけるIMUセンサデータの表現にある。
この問題に対処するために,IMUデータの特徴に基づいてグローバルなビュー表現を抽出し,着用スタイルによるデータ分散の相違を効果的に緩和する手法を提案する。
グローバルビュー表現の有効性を検証するため,グローバルビューデータとローカルビューデータの両方を実験モデルに投入した。
その結果,グローバルなビューデータは,ユーザ間の実験において,ローカルなビューデータよりも有意に優れていた。
さらに,Shufflingに基づくマルチビュー監視ネットワーク(MVFNet)を提案し,ローカルビューとグローバルビューデータを効果的に融合させる。
ビュー分割とビューシャッフルを通じて各ビューの特徴抽出を監督し、重要な特徴を無視したモデルを避ける。
OPPORTUNITYとPAMAP2データセットを用いた大規模な実験により、提案アルゴリズムはユーザ間HARにおける現在の最先端手法よりも優れていることを示した。
関連論文リスト
- CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
HAR(Human Activity Recognition)は、多様なセンサーからのデータを介し、人間の行動の自動化とインテリジェントな識別に不可欠である。
中央サーバー上のデータを集約し、集中処理を行うことによる従来の機械学習アプローチは、メモリ集約であり、プライバシの懸念を高める。
本研究は,画像ベースHARのための効率的なフェデレーション学習フレームワークCDFLを提案する。
論文 参考訳(メタデータ) (2024-07-17T03:17:53Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Decoupling Local and Global Representations of Time Series [38.73548222141307]
本稿では,時系列における大域的・局所的な変動要因の表現を学習するための新しい生成手法を提案する。
実験では,シミュレーションデータ上での真の局所的および大域的変動係数の回復を実証した。
表現を定義する方法の提案は、データモデリングに有用であり、実世界のデータの複雑さに関するより良い洞察をもたらすと信じています。
論文 参考訳(メタデータ) (2022-02-04T17:46:04Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
本稿では,視点問題に対処するため,PANetと呼ばれる新しい視点認識手法を提案する。
対象物のサイズが視点効果によって1つの画像で大きく変化するという観測に基づいて,動的受容場(DRF)フレームワークを提案する。
このフレームワークは、入力画像に応じて拡張畳み込みパラメータによって受容野を調整することができ、モデルが各局所領域についてより識別的な特徴を抽出するのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T04:43:05Z) - Adversarial Deep Feature Extraction Network for User Independent Human
Activity Recognition [4.988898367111902]
本稿では,人間行動認識のための最大平均不一致(MMD)正則化を用いた対向的対象非依存特徴抽出法を提案する。
本手法は,ユーザに依存しない性能を著しく向上し,結果のばらつきを低減できることを示す,よく知られた公開データセット上での評価を行う。
論文 参考訳(メタデータ) (2021-10-23T07:50:32Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
フェデレートラーニング(Federated Learning)とは、複数のデバイスに分散したプライベートデータ上でモデルをトレーニングする手法である。
本稿では,各デバイス上でコンパクトな局所表現を共同で学習する新しいフェデレーション学習アルゴリズムを提案する。
また、プライバシが鍵となる実世界のモバイルデータから、パーソナライズされた気分予測のタスクを評価する。
論文 参考訳(メタデータ) (2020-01-06T12:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。