論文の概要: Optimal spanning tree reconstruction in symbolic regression
- arxiv url: http://arxiv.org/abs/2406.18612v1
- Date: Tue, 25 Jun 2024 13:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 18:27:13.186988
- Title: Optimal spanning tree reconstruction in symbolic regression
- Title(参考訳): シンボリックレグレッションにおける最適スパンニングツリー再構成
- Authors: Radoslav G. Neychev, Innokentiy A. Shibaev, Vadim V. Strijov,
- Abstract要約: モデルは原始関数の重ね合わせである。
提案アルゴリズムは, 加重色グラフからスパンニング木を再構成する。
本稿では,Steiner 木木アルゴリズムを応用した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.553456266022125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the problem of regression model generation. A model is a superposition of primitive functions. The model structure is described by a weighted colored graph. Each graph vertex corresponds to some primitive function. An edge assigns a superposition of two functions. The weight of an edge equals the probability of superposition. To generate an optimal model one has to reconstruct its structure from its graph adjacency matrix. The proposed algorithm reconstructs the~minimum spanning tree from the~weighted colored graph. This paper presents a novel solution based on the prize-collecting Steiner tree algorithm. This algorithm is compared with its alternatives.
- Abstract(参考訳): 本稿では回帰モデル生成の問題について考察する。
モデルは原始関数の重ね合わせである。
モデル構造は、重み付き色グラフによって記述される。
各グラフ頂点は、いくつかの原始関数に対応する。
エッジは2つの関数の重ね合わせを割り当てる。
エッジの重みは重ね合わせの確率と等しい。
最適モデルを生成するには、そのグラフ隣接行列から構造を再構築する必要がある。
提案アルゴリズムは、-重み付き色グラフから-最小スパンニングツリーを再構成する。
本稿では,Steiner 木木アルゴリズムを応用した新しい手法を提案する。
このアルゴリズムは代替のアルゴリズムと比較される。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - More on greedy construction heuristics for the MAX-CUT problem [8.148355685823521]
この図は, 最大カット問題に対して, 主なグリーディを分類するのに有効であることを示す。
SG(Sahni-Gonzalez)アルゴリズムの全てのバージョンはプリム類に分類される。
様々なエッジ・コントラクション(EC)アルゴリズムはKruskalクラスに属する。
論文 参考訳(メタデータ) (2023-12-18T02:52:04Z) - Hierarchical cycle-tree packing model for $K$-core attack problem [0.0]
ここでは、この挑戦的な最適化問題に対して、階層的なサイクルツリーパッキングモデルを導入している。
統計物理学のレプリカ対称キャビティ法を用いて,このモデルを解析する。
関連する階層的サイクルツリー誘導攻撃(tt hCTGA)は、通常のランダムグラフに対するほぼ最適な攻撃解を構築することができる。
論文 参考訳(メタデータ) (2023-03-02T06:47:33Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Learning to Learn Graph Topologies [27.782971146122218]
ノードデータからグラフ構造へのマッピングを学習する(L2O)。
このモデルは、ノードデータとグラフサンプルのペアを使ってエンドツーエンドでトレーニングされる。
合成データと実世界のデータの両方の実験により、我々のモデルは、特定のトポロジ特性を持つグラフを学習する際の古典的反復アルゴリズムよりも効率的であることが示された。
論文 参考訳(メタデータ) (2021-10-19T08:42:38Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Pyramidal Reservoir Graph Neural Network [18.632681846787246]
本稿では,2種類の層を置換するディープグラフニューラルネットワーク(GNN)モデルを提案する。
グラフプーリングがモデルの計算複雑性をいかに低減するかを示す。
RCベースGNNの設計に対する提案手法は,精度と複雑性のトレードオフを有利かつ原則的に実現している。
論文 参考訳(メタデータ) (2021-04-10T08:34:09Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。