論文の概要: RouteLLM: Learning to Route LLMs with Preference Data
- arxiv url: http://arxiv.org/abs/2406.18665v2
- Date: Mon, 1 Jul 2024 05:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:30:11.961643
- Title: RouteLLM: Learning to Route LLMs with Preference Data
- Title(参考訳): RouteLLM: 優先度データによるLLMの経路学習
- Authors: Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez, M Waleed Kadous, Ion Stoica,
- Abstract要約: 大きな言語モデル(LLM)は、幅広いタスクにわたって印象的な機能を示すが、どのモデルを使うかの選択は、パフォーマンスとコストのトレードオフを伴うことが多い。
推論において,より強いLLMと弱いLLMを動的に選択する効率的なルータモデルを提案する。
我々は、人間の嗜好データとデータ拡張技術を利用して、これらのルータのためのトレーニングフレームワークを開発し、性能を向上する。
- 参考スコア(独自算出の注目度): 41.687640419561504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、幅広いタスクにわたって印象的な機能を示すが、どのモデルを使うかの選択には、パフォーマンスとコストのトレードオフが伴うことが多い。
より強力なモデルは効果的ではあるが、高いコストが伴うが、能力の低いモデルはよりコスト効率が良い。
このジレンマに対処するため,提案手法では,コストと応答品質のバランスを最適化することを目的として,推論中に強いLLMと弱いLLMを動的に選択する効率的なルータモデルを提案する。
我々は、人間の嗜好データとデータ拡張技術を利用して、これらのルータのためのトレーニングフレームワークを開発し、性能を向上する。
評価の結果,提案手法は応答の質を損なうことなく,特定のケースで2倍以上のコスト削減を実現していることがわかった。
興味深いことに、我々のルータモデルは、テスト時に強いモデルと弱いモデルが変更されても、大きな転送学習能力を示し、その性能を維持します。
このことは、これらのルータがLCMをデプロイするためのコスト効率は高く、高性能なソリューションを提供する可能性を強調している。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Real-time Adapting Routing (RAR): Improving Efficiency Through Continuous Learning in Software Powered by Layered Foundation Models [5.716829002003189]
既存のルーティングモデルは、慎重にキュレートされたデータから最適なルーティング決定を学ぶことに依存する。
本稿では、FMルーティング決定を継続的に適用するためのRAR(Real-time Adaptive Routing)を提案する。
RARは計算コストの高いモデルへの要求を50.2%削減し、一般的な応答品質の90.5%を維持している。
論文 参考訳(メタデータ) (2024-11-14T23:02:30Z) - TensorOpera Router: A Multi-Model Router for Efficient LLM Inference [27.2803289964386]
TO-lemmaはモノリシックなLLMクエリシステムである。
様々なLLM専門家をシームレスに単一のクエリインターフェースに統合する。
クエリの要求に基づいて、入力クエリを最も高性能な専門家に動的にルーティングする。
論文 参考訳(メタデータ) (2024-08-22T11:57:07Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z) - Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [53.748685766139715]
大規模言語モデル(LLM)は、ほとんどのNLPタスクで優れていますが、そのサイズのため、デプロイに高価なクラウドサーバも必要です。
コスト削減と品質維持のために,それぞれの強みを組み合わせたハイブリッド推論手法を提案する。
実験では、反応の品質が低下することなく、最大40%大きなモデルへの呼び出しを削減できます。
論文 参考訳(メタデータ) (2024-04-22T23:06:42Z) - Which LLM to Play? Convergence-Aware Online Model Selection with
Time-Increasing Bandits [43.65904435249823]
本稿では,モデルの性能向上を効果的に予測する帯域幅増加アルゴリズムTI-UCBを提案する。
本研究は,より効率的かつ経済的なモデル選択のために,増大する収束パターンを活用することの重要性を強調した。
論文 参考訳(メタデータ) (2024-03-11T23:52:46Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - Online and Scalable Model Selection with Multi-Armed Bandits [0.0]
AMS(Automatic Model Selector)は、現実世界のパフォーマンスメトリクスに基づいた入札戦略のスケーラブルなオンライン選択のためのシステムです。
AMSは、最高のパフォーマンスのモデルに最もトラフィックを割り当て、オンラインパフォーマンスが悪い人にトラフィックを減らします。
複数の広告キャンペーンのライブトラフィックテストでは、AMSシステムは広告キャンペーンのパフォーマンス向上に非常に効果的であることが証明されました。
論文 参考訳(メタデータ) (2021-01-25T20:12:52Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。