Simulating The U.S. Senate: An LLM-Driven Agent Approach to Modeling Legislative Behavior and Bipartisanship
- URL: http://arxiv.org/abs/2406.18702v1
- Date: Wed, 26 Jun 2024 19:10:51 GMT
- Title: Simulating The U.S. Senate: An LLM-Driven Agent Approach to Modeling Legislative Behavior and Bipartisanship
- Authors: Zachary R. Baker, Zarif L. Azher,
- Abstract summary: This study introduces a novel approach to simulating legislative processes using LLM-driven virtual agents.
We developed agents representing individual senators and placed them in simulated committee discussions.
The agents demonstrated the ability to engage in realistic debate, provide thoughtful reflections, and find bipartisan solutions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a novel approach to simulating legislative processes using LLM-driven virtual agents, focusing on the U.S. Senate Intelligence Committee. We developed agents representing individual senators and placed them in simulated committee discussions. The agents demonstrated the ability to engage in realistic debate, provide thoughtful reflections, and find bipartisan solutions under certain conditions. Notably, the simulation also showed promise in modeling shifts towards bipartisanship in response to external perturbations. Our results indicate that this LLM-driven approach could become a valuable tool for understanding and potentially improving legislative processes, supporting a broader pattern of findings highlighting how LLM-based agents can usefully model real-world phenomena. Future works will focus on enhancing agent complexity, expanding the simulation scope, and exploring applications in policy testing and negotiation.
Related papers
- Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction [37.856194200684364]
This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios.
MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants' characters and behaviors.
arXiv Detail & Related papers (2025-02-08T15:05:24Z) - Large Language Models as Theory of Mind Aware Generative Agents with Counterfactual Reflection [31.38516078163367]
ToM-agent is designed to empower LLMs-based generative agents to simulate ToM in open-domain conversational interactions.
ToM-agent disentangles the confidence from mental states, facilitating the emulation of an agent's perception of its counterpart's mental states.
Our findings indicate that the ToM-agent can grasp the underlying reasons for their counterpart's behaviors beyond mere semantic-emotional supporting or decision-making based on common sense.
arXiv Detail & Related papers (2025-01-26T00:32:38Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.
LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - Political Actor Agent: Simulating Legislative System for Roll Call Votes Prediction with Large Language Models [9.0463587094323]
Political Actor Agent (PAA) is a novel framework that utilizes Large Language Models to overcome limitations.
By employing role-playing architectures and simulating legislative system, PAA provides a scalable and interpretable paradigm for predicting roll-call votes.
We conducted comprehensive experiments using voting records from the 117-118th U.S. House of Representatives, validating the superior performance and interpretability of PAA.
arXiv Detail & Related papers (2024-12-10T03:06:28Z) - On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the
Key? [84.36332588191623]
We propose a novel group discussion framework to enrich the set of discussion mechanisms.
We observe that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt.
arXiv Detail & Related papers (2024-02-28T12:04:05Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
These task solvers necessitate manually crafted prompts to inform task rules and regulate behaviors.
We propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - Simulating Opinion Dynamics with Networks of LLM-based Agents [7.697132934635411]
We propose a new approach to simulating opinion dynamics based on populations of Large Language Models (LLMs)
Our findings reveal a strong inherent bias in LLM agents towards producing accurate information, leading simulated agents to consensus in line with scientific reality.
After inducing confirmation bias through prompt engineering, however, we observed opinion fragmentation in line with existing agent-based modeling and opinion dynamics research.
arXiv Detail & Related papers (2023-11-16T07:01:48Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS) is a framework for learning AI policies that are robust to such multiagent sim-to-real gaps.
ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
In particular, ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
arXiv Detail & Related papers (2021-06-10T04:32:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.