Psychological Profiling in Cybersecurity: A Look at LLMs and Psycholinguistic Features
- URL: http://arxiv.org/abs/2406.18783v3
- Date: Fri, 9 Aug 2024 17:57:00 GMT
- Title: Psychological Profiling in Cybersecurity: A Look at LLMs and Psycholinguistic Features
- Authors: Jean Marie Tshimula, D'Jeff K. Nkashama, Jean Tshibangu Muabila, René Manassé Galekwa, Hugues Kanda, Maximilien V. Dialufuma, Mbuyi Mukendi Didier, Kalonji Kalala, Serge Mundele, Patience Kinshie Lenye, Tighana Wenge Basele, Aristarque Ilunga, Christian N. Mayemba, Nathanaël M. Kasoro, Selain K. Kasereka, Hardy Mikese, Pierre-Martin Tardif, Marc Frappier, Froduald Kabanza, Belkacem Chikhaoui, Shengrui Wang, Ali Mulenda Sumbu, Xavier Ndona, Raoul Kienge-Kienge Intudi,
- Abstract summary: We explore the potential of psychological profiling techniques, particularly focusing on the utilization of Large Language Models (LLMs) and psycholinguistic features.
Our research underscores the importance of integrating psychological perspectives into cybersecurity practices to bolster defense mechanisms against evolving threats.
- Score: 0.741787275567662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing sophistication of cyber threats necessitates innovative approaches to cybersecurity. In this paper, we explore the potential of psychological profiling techniques, particularly focusing on the utilization of Large Language Models (LLMs) and psycholinguistic features. We investigate the intersection of psychology and cybersecurity, discussing how LLMs can be employed to analyze textual data for identifying psychological traits of threat actors. We explore the incorporation of psycholinguistic features, such as linguistic patterns and emotional cues, into cybersecurity frameworks. Our research underscores the importance of integrating psychological perspectives into cybersecurity practices to bolster defense mechanisms against evolving threats.
Related papers
- Analysing the cultural dimensions of cybercriminal groups -- A case study on the Conti ransomware group [0.0]
We propose an additional component for profiling threat actor groups through analysing cultural aspects of human behaviours and interactions.
We conduct thematic analysis across the six dimensions of the Hofstede national culture classification and the eight dimensions of the Meyer classification on leaked internal communications of the ransomware group Conti.
Insights from such applications can, first, assist in combating cybercrime and, second, can provide a level of confidence in nuanced cyber-attack attribution processes.
arXiv Detail & Related papers (2024-11-04T19:31:15Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Cyber-sensorium: An Extension of the Cyber Public Health Framework [0.5852077003870417]
We draw parallels between the digital network and a biological nervous system essential to human welfare.
Cyberattacks on this system present serious global risks, underlining the need for its protection.
arXiv Detail & Related papers (2024-06-09T22:44:49Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z) - Navigating Cybersecurity Training: A Comprehensive Review [7.731471533663403]
This survey examines a spectrum of cybersecurity awareness training methods, analyzing traditional, technology-based, and innovative strategies.
It evaluates the principles, efficacy, and constraints of each method, presenting a comparative analysis that highlights their pros and cons.
arXiv Detail & Related papers (2024-01-20T21:14:24Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Exploring Cybercriminal Activities, Behaviors and Profiles [2.7195102129095003]
This article explores cybercriminal activities and behavior from a psychology and human aspects perspective.
We examine motivations, psychological and other interdisciplinary concepts as they may impact/influence cybercriminal activities.
arXiv Detail & Related papers (2023-08-30T10:57:19Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
Artificial Intelligence (AI) and Machine Learning (ML) can be leveraged as key enabling technologies for cyber-defense.
In this paper, we are concerned with the investigation of the various deep learning techniques employed for network intrusion detection.
arXiv Detail & Related papers (2020-12-04T23:09:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.