Navigating Cybersecurity Training: A Comprehensive Review
- URL: http://arxiv.org/abs/2401.11326v1
- Date: Sat, 20 Jan 2024 21:14:24 GMT
- Title: Navigating Cybersecurity Training: A Comprehensive Review
- Authors: Saif Al-Dean Qawasmeh, Ali Abdullah S. AlQahtani, Muhammad Khurram Khan,
- Abstract summary: This survey examines a spectrum of cybersecurity awareness training methods, analyzing traditional, technology-based, and innovative strategies.
It evaluates the principles, efficacy, and constraints of each method, presenting a comparative analysis that highlights their pros and cons.
- Score: 7.731471533663403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic realm of cybersecurity, awareness training is crucial for strengthening defenses against cyber threats. This survey examines a spectrum of cybersecurity awareness training methods, analyzing traditional, technology-based, and innovative strategies. It evaluates the principles, efficacy, and constraints of each method, presenting a comparative analysis that highlights their pros and cons. The study also investigates emerging trends like artificial intelligence and extended reality, discussing their prospective influence on the future of cybersecurity training. Additionally, it addresses implementation challenges and proposes solutions, drawing on insights from real-world case studies. The goal is to bolster the understanding of cybersecurity awareness training's current landscape, offering valuable perspectives for both practitioners and scholars.
Related papers
- Analysing India's Cyber Warfare Readiness and Developing a Defence Strategy [0.0]
The demand for strong cyber defence measures grows, especially in countries such as India.
The literature review reveals significant shortcomings in India's cyber defence readiness.
The study proposes an educational framework for training cyber professionals.
arXiv Detail & Related papers (2024-06-18T12:55:07Z) - Cyberbully and Online Harassment: Issues Associated with Digital Wellbeing [0.0]
This research synthesizes empirical findings from diverse studies to evaluate how innovative technological interventions contribute to reducing the prevalence of cyberbullying.
The study focuses on the effectiveness of these interventions in various settings, highlighting the need for adaptive strategies that respond to the dynamic digital landscape.
arXiv Detail & Related papers (2024-04-29T17:49:49Z) - Foundations of Cyber Resilience: The Confluence of Game, Control, and Learning Theories [15.764094200832071]
Cyber resilience focuses on preparation, response, and recovery from cyber threats that are challenging to prevent.
Game theory, control theory, and learning theories are three major pillars for the design of cyber resilience mechanisms.
This chapter presents various theoretical paradigms, including dynamic asymmetric games, moving horizon control, conjectural learning, and meta-learning.
arXiv Detail & Related papers (2024-04-01T16:02:21Z) - Systemization of Knowledge (SoK)- Cross Impact of Transfer Learning in Cybersecurity: Offensive, Defensive and Threat Intelligence Perspectives [25.181087776375914]
This paper presents a comprehensive survey of transfer learning applications in cybersecurity.
The survey highlights the significance of transfer learning in addressing critical issues in cybersecurity.
The paper identifies future research directions and challenges that require community attention.
arXiv Detail & Related papers (2023-09-12T00:26:38Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
Given the escalating risks of malicious attacks in the finance sector, understanding adversarial strategies and robust defense mechanisms for machine learning models is critical.
We aim to investigate the current state and dynamics of adversarial attacks and defenses for neural network models that use sequential financial data as the input.
We have designed a competition that allows realistic and detailed investigation of problems in modern financial transaction data.
The participants compete directly against each other, so possible attacks and defenses are examined in close-to-real-life conditions.
arXiv Detail & Related papers (2023-08-22T12:53:09Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
Explainable Artificial Intelligence (XAI) aims to create machine learning models that can provide clear and interpretable explanations for their decisions and actions.
In the field of network cybersecurity, XAI has the potential to revolutionize the way we approach network security by enabling us to better understand the behavior of cyber threats.
arXiv Detail & Related papers (2023-03-07T22:54:18Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.