論文の概要: Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
- arxiv url: http://arxiv.org/abs/2406.18806v1
- Date: Thu, 27 Jun 2024 00:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 15:37:16.245415
- Title: Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
- Title(参考訳): 統計多様体上の一般測地線に沿ったサンプリングによる密度比の推定
- Authors: Masanari Kimura, Howard Bondell,
- Abstract要約: インクリメンタルな混合に基づく密度比推定のための既存の手法を幾何学的に再解釈する。
そのような方法を達成するには、モンテカルロは2つの分布の変換を通して測地線に沿ってサンプリングする必要がある。
提案手法が既存手法より優れていることを示す実験を行った。
- 参考スコア(独自算出の注目度): 0.951494089949975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The density ratio of two probability distributions is one of the fundamental tools in mathematical and computational statistics and machine learning, and it has a variety of known applications. Therefore, density ratio estimation from finite samples is a very important task, but it is known to be unstable when the distributions are distant from each other. One approach to address this problem is density ratio estimation using incremental mixtures of the two distributions. We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures. We show that these methods can be regarded as iterating on the Riemannian manifold along a particular curve between the two probability distributions. Making use of the geometry of the manifold, we propose to consider incremental density ratio estimation along generalized geodesics on this manifold. To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions. We show how to implement an iterative algorithm to sample along these geodesics and show how changing the distances along the geodesic affect the variance and accuracy of the estimation of the density ratio. Our experiments demonstrate that the proposed approach outperforms the existing approaches using incremental mixtures that do not take the geometry of the
- Abstract(参考訳): 2つの確率分布の密度比は、数学的および計算統計学と機械学習の基本的なツールの1つであり、様々な既知の応用がある。
したがって、有限標本からの密度比の推定は非常に重要な課題であるが、分布が互いに離れているときに不安定であることが知られている。
この問題に対処する1つのアプローチは、2つの分布のインクリメンタルな混合を用いた密度比の推定である。
インクリメンタルな混合に基づく密度比推定のための既存の手法を幾何学的に再解釈する。
これらの手法は、2つの確率分布の間の特定の曲線に沿ってリーマン多様体上で反復的であるとみなすことができる。
多様体の幾何学を用いて、この多様体上の一般化された測地線に沿った増分密度比の推定を検討する。
そのような方法を達成するには、モンテカルロは2つの分布の変換を通して測地線に沿ってサンプリングする必要がある。
これらの測地線に沿って反復的アルゴリズムを実装し,測地線に沿った距離の変化が密度比の推定のばらつきと精度にどのように影響するかを示す。
提案手法は, 幾何を取らないインクリメンタル混合を用いて既存手法よりも優れていることを示す実験を行った。
関連論文リスト
- Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
混合モデルの後方推論を要約する既存の方法は、クラスタリングのための暗黙のランダムパーティションの点推定を同定することに焦点を当てている。
本研究では,非パラメトリックベイズ混合モデルにおける後部推論を要約し,混合度(または混合度)の密度推定を推論対象として優先順位付けする手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T02:15:38Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
本稿では, 観測試料の確率を最大化するための分散安定化密度推定問題を提案する。
信頼性の高い異常検知器を得るために,分散安定化分布を学習するための自己回帰モデルのスペクトルアンサンブルを導入する。
我々は52のデータセットで広範なベンチマークを行い、我々の手法が最先端の結果につながることを示した。
論文 参考訳(メタデータ) (2023-06-01T11:52:58Z) - Estimating Joint Probability Distribution With Low-Rank Tensor
Decomposition, Radon Transforms and Dictionaries [3.0892724364965005]
本報告では, 混合成分の少ない製品密度の混合として, 基礎となる分布を分解できることを仮定して, データサンプルから結合確率密度を推定する手法について述べる。
1-次元の密度を表す辞書と、1-次元の辺りから合同分布を推定するランダムな投影という2つの重要なアイデアを組み合わせる。
提案アルゴリズムは, 従来の辞書を用いた手法に比べて, サンプルの複雑さの向上に有効である。
論文 参考訳(メタデータ) (2023-04-18T05:37:15Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Gaussian Mixture Estimation from Weighted Samples [9.442139459221785]
ガウス混合密度のパラメータを、与えられた加重サンプルの集合を最もよく表す成分数で推定することを検討する。
重み付き成分を持つ連続領域上のディラック混合密度を離散的ディラック混合密度と見なして、サンプルの密度解釈を採用する。
サンプル位置だけでなく,対応する重みも適切に検討する予測最大化法を提案する。
論文 参考訳(メタデータ) (2021-06-09T14:38:46Z) - Generative Learning With Euler Particle Transport [14.557451744544592]
生成学習のためのユーラー粒子輸送(EPT)手法を提案する。
提案手法は, 基準分布から目標分布への最適輸送マップの探索の問題に動機付けられている。
提案する密度比(差分)推定器は,データが低次元多様体上で支持されている場合,「次元の曲線」に支障を来さないことを示す。
論文 参考訳(メタデータ) (2020-12-11T03:10:53Z) - Posterior Ratio Estimation of Latent Variables [14.619879849533662]
いくつかのアプリケーションでは、観測から無視される確率変数の分布を比較したい。
潜在変数の2つの後続確率密度関数の比を推定する問題について検討する。
論文 参考訳(メタデータ) (2020-02-15T16:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。