Learning Modality Knowledge Alignment for Cross-Modality Transfer
- URL: http://arxiv.org/abs/2406.18864v1
- Date: Thu, 27 Jun 2024 03:23:47 GMT
- Title: Learning Modality Knowledge Alignment for Cross-Modality Transfer
- Authors: Wenxuan Ma, Shuang Li, Lincan Cai, Jingxuan Kang,
- Abstract summary: Cross-modality transfer aims to leverage large pretrained models to complete tasks that may not belong to the modality of pretraining data.
Existing works achieve certain success in extending classical finetuning to cross-modal scenarios, yet we still lack understanding about the influence of modality gap on the transfer.
We present Modality kNowledge Alignment (MoNA), a meta-learning approach that learns target data transformation to reduce the modality knowledge discrepancy ahead of the transfer.
- Score: 9.19049344360835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-modality transfer aims to leverage large pretrained models to complete tasks that may not belong to the modality of pretraining data. Existing works achieve certain success in extending classical finetuning to cross-modal scenarios, yet we still lack understanding about the influence of modality gap on the transfer. In this work, a series of experiments focusing on the source representation quality during transfer are conducted, revealing the connection between larger modality gap and lesser knowledge reuse which means ineffective transfer. We then formalize the gap as the knowledge misalignment between modalities using conditional distribution P(Y|X). Towards this problem, we present Modality kNowledge Alignment (MoNA), a meta-learning approach that learns target data transformation to reduce the modality knowledge discrepancy ahead of the transfer. Experiments show that out method enables better reuse of source modality knowledge in cross-modality transfer, which leads to improvements upon existing finetuning methods.
Related papers
- Encapsulating Knowledge in One Prompt [56.31088116526825]
KiOP encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data.
From a practicality standpoint, this paradigm proves the effectiveness of Visual Prompt in data inaccessible contexts.
Experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm.
arXiv Detail & Related papers (2024-07-16T16:35:23Z) - Similarity-based Knowledge Transfer for Cross-Domain Reinforcement
Learning [3.3148826359547523]
We develop a semi-supervised alignment loss to match different spaces with a set of encoder-decoders.
In comparison to prior works, our method does not require data to be aligned, paired or collected by expert policies.
arXiv Detail & Related papers (2023-12-05T19:26:01Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Robust Transfer Learning with Unreliable Source Data [13.276850367115333]
We introduce a novel quantity called the ''ambiguity level'' that measures the discrepancy between the target and source regression functions.
We propose a simple transfer learning procedure, and establish a general theorem that shows how this new quantity is related to the transferability of learning.
arXiv Detail & Related papers (2023-10-06T21:50:21Z) - One-stage Modality Distillation for Incomplete Multimodal Learning [7.791488931628906]
This paper presents a one-stage modality distillation framework that unifies the privileged knowledge transfer and modality information fusion.
The proposed framework can overcome the problem of incomplete modality input in various scenes and achieve state-of-the-art performance.
arXiv Detail & Related papers (2023-09-15T07:12:27Z) - CLIP-Driven Fine-grained Text-Image Person Re-identification [50.94827165464813]
TIReID aims to retrieve the image corresponding to the given text query from a pool of candidate images.
We propose a CLIP-driven Fine-grained information excavation framework (CFine) to fully utilize the powerful knowledge of CLIP for TIReID.
arXiv Detail & Related papers (2022-10-19T03:43:12Z) - CARTL: Cooperative Adversarially-Robust Transfer Learning [22.943270371841226]
In deep learning, a typical strategy for transfer learning is to freeze the early layers of a pre-trained model and fine-tune the rest of its layers on the target domain.
We propose a novel cooperative adversarially-robust transfer learning (CARTL) by pre-training the model via feature distance minimization and fine-tuning the pre-trained model with non-expansive fine-tuning for target domain tasks.
arXiv Detail & Related papers (2021-06-12T02:29:55Z) - Continuous Transition: Improving Sample Efficiency for Continuous
Control Problems via MixUp [119.69304125647785]
This paper introduces a concise yet powerful method to construct Continuous Transition.
Specifically, we propose to synthesize new transitions for training by linearly interpolating the consecutive transitions.
To keep the constructed transitions authentic, we also develop a discriminator to guide the construction process automatically.
arXiv Detail & Related papers (2020-11-30T01:20:23Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Transfer Heterogeneous Knowledge Among Peer-to-Peer Teammates: A Model
Distillation Approach [55.83558520598304]
We propose a brand new solution to reuse experiences and transfer value functions among multiple students via model distillation.
We also describe how to design an efficient communication protocol to exploit heterogeneous knowledge.
Our proposed framework, namely Learning and Teaching Categorical Reinforcement, shows promising performance on stabilizing and accelerating learning progress.
arXiv Detail & Related papers (2020-02-06T11:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.