論文の概要: Zero-shot domain adaptation based on dual-level mix and contrast
- arxiv url: http://arxiv.org/abs/2406.18996v1
- Date: Thu, 27 Jun 2024 08:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:47:16.744864
- Title: Zero-shot domain adaptation based on dual-level mix and contrast
- Title(参考訳): 二重レベル混合とコントラストに基づくゼロショット領域適応
- Authors: Yu Zhe, Jun Sakuma,
- Abstract要約: 本稿では,タスクバイアスの低い領域不変な特徴を学習するための新しいZSDA手法を提案する。
実験の結果,提案手法はいくつかのベンチマークで良好な性能を示した。
- 参考スコア(独自算出の注目度): 8.225819874406238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot domain adaptation (ZSDA) is a domain adaptation problem in the situation that labeled samples for a target task (task of interest) are only available from the source domain at training time, but for a task different from the task of interest (irrelevant task), labeled samples are available from both source and target domains. In this situation, classical domain adaptation techniques can only learn domain-invariant features in the irrelevant task. However, due to the difference in sample distribution between the two tasks, domain-invariant features learned in the irrelevant task are biased and not necessarily domain-invariant in the task of interest. To solve this problem, this paper proposes a new ZSDA method to learn domain-invariant features with low task bias. To this end, we propose (1) data augmentation with dual-level mixups in both task and domain to fill the absence of target task-of-interest data, (2) an extension of domain adversarial learning to learn domain-invariant features with less task bias, and (3) a new dual-level contrastive learning method that enhances domain-invariance and less task biasedness of features. Experimental results show that our proposal achieves good performance on several benchmarks.
- Abstract(参考訳): ゼロショットドメイン適応(ゼロショットドメイン適応、ZSDA)は、ターゲットタスク(興味のあるタスク)のラベル付きサンプルがトレーニング時にソースドメインからのみ利用可能である状況におけるドメイン適応問題であり、興味のあるタスク(関連タスク)とは異なるタスクに対して、ラベル付きサンプルはソースドメインとターゲットドメインの両方から利用可能である。
この状況下では、古典的なドメイン適応技術は、無関係なタスクにおいてのみドメイン不変の特徴を学習することができる。
しかし、2つのタスク間のサンプル分布の違いにより、無関係なタスクで学んだドメイン不変の特徴は偏りがあり、興味のあるタスクでは必ずしもドメイン不変ではない。
そこで本研究では,タスクバイアスの低い領域不変な特徴を学習するための新しいZSDA手法を提案する。
そこで本研究では,(1)目的とするタスク・オブ・関心データの欠如を補うために,タスク・アンド・ドメインの2段階混合によるデータ強化,(2)課題バイアスの少ないドメイン不変特徴を学習するためのドメイン逆学習の拡張,(3)特徴量の分散とタスク偏りの低減を図った新しい2段階対比学習手法を提案する。
実験の結果,提案手法はいくつかのベンチマークで良好な性能を示した。
関連論文リスト
- SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - Adversarial Learning for Zero-shot Domain Adaptation [31.334196673143257]
ゼロショットドメイン適応は、データサンプルもラベルもターゲットドメインでのパラメータ学習には使用できない問題である。
本稿では,非関係なタスクから関心のあるタスクへのドメインシフトを移譲することで,ZSDAの新たな手法を提案する。
提案手法をベンチマークデータセット上で評価し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-09-11T03:41:32Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Learning Task-oriented Disentangled Representations for Unsupervised
Domain Adaptation [165.61511788237485]
Unsupervised domain adapt (UDA) は、ラベル付きソースドメインとラベルなしターゲットドメインの間のドメインシフト問題に対処することを目的としている。
UDAのための動的タスク指向の非絡合ネットワーク(DTDN)を提案し,非絡合表現をエンドツーエンドで学習する。
論文 参考訳(メタデータ) (2020-07-27T01:21:18Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
本研究では,コントラスト特徴を学習するContradistinguisherと呼ばれるモデルを提案する。
Office-31とVisDA-2017における最先端のデータセットを、シングルソースとマルチソースの両方で実現しています。
論文 参考訳(メタデータ) (2020-05-25T19:54:38Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z) - A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation [142.31610972922067]
この研究は、特にターゲットドメインのクラスラベルがソースドメインのサブセットである場合に、教師なしのドメイン適応問題に対処する。
本稿では,ドメイン逆境学習に基づく新しいドメイン適応手法 BA$3$US を提案し,BAA(Ba balanced Adversarial Alignment)とAUS(Adaptive Uncertainty Suppression)の2つの新しい手法を提案する。
複数のベンチマーク実験の結果、BA$3$USが部分的なドメイン適応タスクの最先端を超越していることが示されている。
論文 参考訳(メタデータ) (2020-03-05T11:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。