論文の概要: A look under the hood of the Interactive Deep Learning Enterprise (No-IDLE)
- arxiv url: http://arxiv.org/abs/2406.19054v1
- Date: Thu, 27 Jun 2024 10:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:37:31.600449
- Title: A look under the hood of the Interactive Deep Learning Enterprise (No-IDLE)
- Title(参考訳): 対話型ディープラーニング企業(No-IDLE)の立場からの一考察
- Authors: Daniel Sonntag, Michael Barz, Thiago Gouvêa,
- Abstract要約: No-IDLEは、非専門家の機械学習におけるインタラクティブなディープラーニングソリューションのリーチを高めることを目的としている。
この技術レポートで述べられている重要なイノベーションの1つは、対話型機械学習とマルチモーダルインタラクションを組み合わせた方法論である。
- 参考スコア(独自算出の注目度): 2.7719338074999538
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This DFKI technical report presents the anatomy of the No-IDLE prototype system (funded by the German Federal Ministry of Education and Research) that provides not only basic and fundamental research in interactive machine learning, but also reveals deeper insights into users' behaviours, needs, and goals. Machine learning and deep learning should become accessible to millions of end users. No-IDLE's goals and scienfific challenges centre around the desire to increase the reach of interactive deep learning solutions for non-experts in machine learning. One of the key innovations described in this technical report is a methodology for interactive machine learning combined with multimodal interaction which will become central when we start interacting with semi-intelligent machines in the upcoming area of neural networks and large language models.
- Abstract(参考訳): このDFKI技術レポートは、対話型機械学習の基本的な研究だけでなく、ユーザの行動、ニーズ、目標に対する深い洞察を提供するNo-IDLEプロトタイプシステムの解剖(ドイツ連邦教育研究省が資金提供)を提示する。
機械学習とディープラーニングは、数百万のエンドユーザが利用できるようになるはずだ。
No-IDLEの目標と精巧な課題は、マシンラーニングの非専門家に対するインタラクティブなディープラーニングソリューションのリーチを拡大したいという願望を中心にしている。
この技術レポートで説明されている重要なイノベーションの1つは、対話型機械学習とマルチモーダルインタラクションを組み合わせた方法論である。
関連論文リスト
- Deep Learning and Machine Learning -- Natural Language Processing: From Theory to Application [17.367710635990083]
自然言語処理(NLP)と大規模言語モデル(LLM)の役割に焦点を当てる。
本稿では,データ前処理技術とHugging Faceのようなフレームワークを用いたトランスフォーマーモデルの実装について論じる。
マルチリンガルデータの扱い、バイアスの低減、モデルの堅牢性確保といった課題を強調している。
論文 参考訳(メタデータ) (2024-10-30T09:35:35Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Machine learning and deep learning [0.0]
機械学習は、問題固有のトレーニングデータから学習するシステムの能力を記述する。
ディープラーニングは、人工ニューラルネットワークに基づく機械学習の概念である。
論文 参考訳(メタデータ) (2021-04-12T09:54:12Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
多エージェントLfDロボット学習のための新しい認知アーキテクチャを導入し、オープンでスケーラブルで拡張可能なロボットシステムの信頼性の高い展開を可能にする。
この概念化は、ロボットプラットフォームのネットワークの端ノードで動作する複数のAI駆動の認知プロセスを採用することに依存している。
提案フレームワークの適用性は,実世界の産業ケーススタディの例を用いて説明できる。
論文 参考訳(メタデータ) (2020-12-15T09:49:22Z) - Semi-Supervised Learning Approach to Discover Enterprise User Insights
from Feedback and Support [9.66491980663996]
本稿では,Deep Learning と Topic Modeling を利用した,革新的なセミスーパーバイザラーニング手法を提案する。
このアプローチは、教師付き学習と新しい確率的・セマンティックハイブリッドトピック推論(PSHTI)モデルを組み合わせたBERTベースのマルチクラス化アルゴリズムである。
本システムは,Webクローリングを通じて製品に関するドメイン知識を活用することで,トップワードを自己ヘルプ問題にマッピングすることを可能にする。
論文 参考訳(メタデータ) (2020-07-18T01:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。