Adaptive Stochastic Weight Averaging
- URL: http://arxiv.org/abs/2406.19092v1
- Date: Thu, 27 Jun 2024 11:17:13 GMT
- Title: Adaptive Stochastic Weight Averaging
- Authors: Caglar Demir, Arnab Sharma, Axel-Cyrille Ngonga Ngomo,
- Abstract summary: Weight Averaging (SWA) technique maintains a running average of model parameters from a specific epoch onward.
Our experiments over 11 benchmark datasets with 7 baseline models suggest that ASWA leads to a statistically better generalization across models and datasets.
- Score: 1.90894751866253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensemble models often improve generalization performances in challenging tasks. Yet, traditional techniques based on prediction averaging incur three well-known disadvantages: the computational overhead of training multiple models, increased latency, and memory requirements at test time. To address these issues, the Stochastic Weight Averaging (SWA) technique maintains a running average of model parameters from a specific epoch onward. Despite its potential benefits, maintaining a running average of parameters can hinder generalization, as an underlying running model begins to overfit. Conversely, an inadequately chosen starting point can render SWA more susceptible to underfitting compared to an underlying running model. In this work, we propose Adaptive Stochastic Weight Averaging (ASWA) technique that updates a running average of model parameters, only when generalization performance is improved on the validation dataset. Hence, ASWA can be seen as a combination of SWA with the early stopping technique, where the former accepts all updates on a parameter ensemble model and the latter rejects any update on an underlying running model. We conducted extensive experiments ranging from image classification to multi-hop reasoning over knowledge graphs. Our experiments over 11 benchmark datasets with 7 baseline models suggest that ASWA leads to a statistically better generalization across models and datasets
Related papers
- Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach [65.6966065843227]
Iterative Reweight-then-IRO is a framework that performs RL-style alignment of a frozen base model without touching its parameters.<n>At test time, the value functions are used to guide the base model generation via a search-based optimization process.<n> Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT)
arXiv Detail & Related papers (2025-06-21T21:49:02Z) - Intention-Conditioned Flow Occupancy Models [69.79049994662591]
Large-scale pre-training has fundamentally changed how machine learning research is done today.<n>Applying this same framework to reinforcement learning is appealing because it offers compelling avenues for addressing core challenges in RL.<n>Recent advances in generative AI have provided new tools for modeling highly complex distributions.
arXiv Detail & Related papers (2025-06-10T15:27:46Z) - Entropy-Based Adaptive Weighting for Self-Training [15.089334734753677]
We propose Entropy-Based Adaptive Weighting for Self-Training (EAST)
EAST is an adaptive weighting strategy designed to prioritize uncertain data during self-training.
We evaluate our approach on GSM8K and MATH benchmarks.
arXiv Detail & Related papers (2025-03-31T10:04:35Z) - SeWA: Selective Weight Average via Probabilistic Masking [51.015724517293236]
We show that only a few points are needed to achieve better and faster convergence.
We transform the discrete selection problem into a continuous subset optimization framework.
We derive the SeWA's stability bounds, which are sharper than that under both convex image checkpoints.
arXiv Detail & Related papers (2025-02-14T12:35:21Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Post-Hoc Reversal: Are We Selecting Models Prematurely? [13.910702424593797]
We show a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying post-hoc transforms.
Preliminary analyses suggest that these transforms induce reversal by suppressing the influence of mislabeled examples.
We propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions.
arXiv Detail & Related papers (2024-04-11T14:58:19Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
Foundation models like CLIP allow zero-shot transfer on various tasks without additional training data.
Fine-tuning and ensembling are also commonly adopted to better fit the downstream tasks.
However, we argue that prior work has overlooked the inherent biases in foundation models.
arXiv Detail & Related papers (2023-10-12T08:01:11Z) - Universal Test-time Adaptation through Weight Ensembling, Diversity
Weighting, and Prior Correction [3.5139431332194198]
Test-time adaptation (TTA) continues to update the model after deployment, leveraging the current test data.
We identify and highlight several challenges a self-training based method has to deal with.
To prevent the model from becoming biased, we leverage a dataset and model-agnostic certainty and diversity weighting.
arXiv Detail & Related papers (2023-06-01T13:16:10Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
We show that averaging the weights of multiple models fine-tuned with different hyper parameter configurations improves accuracy and robustness.
We show that the model soup approach extends to multiple image classification and natural language processing tasks.
arXiv Detail & Related papers (2022-03-10T17:03:49Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
It is known that if models selected for data modelling are distinct (linear/non-linear, static/dynamic) and independent (minimally correlated) models, the accuracy of the predictions is improved.
Various approaches suggested in the literature to weigh the ensemble models use a static set of weights.
To address this issue, a Reinforcement Learning (RL) approach to dynamically assign and update weights of each of the models at different time instants.
arXiv Detail & Related papers (2020-08-20T10:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.