論文の概要: Fairness and Bias in Multimodal AI: A Survey
- arxiv url: http://arxiv.org/abs/2406.19097v1
- Date: Thu, 27 Jun 2024 11:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:27:46.516509
- Title: Fairness and Bias in Multimodal AI: A Survey
- Title(参考訳): マルチモーダルAIにおける公正性とバイアス
- Authors: Tosin Adewumi, Lama Alkhaled, Namrata Gurung, Goya van Boven, Irene Pagliai,
- Abstract要約: 大規模マルチモーダルモデルにおける公平性とバイアスの最小限の研究に関してギャップを埋める。
我々は、偏見を定量化する新しいカテゴリーを同定する(前略)
我々は、研究者がこれらの課題に対処する様々な方法について批判的に議論する。
- 参考スコア(独自算出の注目度): 0.20971479389679337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of addressing fairness and bias in artificial intelligence (AI) systems cannot be over-emphasized. Mainstream media has been awashed with news of incidents around stereotypes and bias in many of these systems in recent years. In this survey, we fill a gap with regards to the minimal study of fairness and bias in Large Multimodal Models (LMMs) compared to Large Language Models (LLMs), providing 50 examples of datasets and models along with the challenges affecting them; we identify a new category of quantifying bias (preuse), in addition to the two well-known ones in the literature: intrinsic and extrinsic; we critically discuss the various ways researchers are addressing these challenges. Our method involved two slightly different search queries on Google Scholar, which revealed that 33,400 and 538,000 links are the results for the terms "Fairness and bias in Large Multimodal Models" and "Fairness and bias in Large Language Models", respectively. We believe this work contributes to filling this gap and providing insight to researchers and other stakeholders on ways to address the challenge of fairness and bias in multimodal A!.
- Abstract(参考訳): 人工知能(AI)システムにおける公平性とバイアスに対処することの重要性は、過度に強調できない。
近年、主流メディアはステレオタイプやバイアスにまつわる出来事のニュースで目覚めている。
本稿では,Large Language Models (LLMs) と比較して,Large Multimodal Models (LMMs) における公正さとバイアスの最小限の研究におけるギャップを埋めるとともに,それらに影響を与える課題とともに,50のデータセットとモデルのサンプルを提供する。
提案手法は,Google Scholar上での2つの検索クエリで,33,400,538,000のリンクが,それぞれ「大規模マルチモーダルモデルにおけるフェアネスとバイアス」と「大規模言語モデルにおけるフェアネスとバイアス」という用語による結果であることが判明した。
この研究は、このギャップを埋め、研究者や他のステークホルダーにマルチモーダルAにおける公平さとバイアスの課題に対処する方法に関する洞察を与えるのに役立つと信じています。
と。
関連論文リスト
- Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBenchは、LVLM(Large Vision-Language Models)におけるバイアスの評価を目的としたベンチマークである。
我々は、年齢、障害状態、性別、国籍、身体的外観、人種、宗教、職業、社会的経済状態、および2つの交叉バイアスカテゴリー(人種x性、人種x社会経済状態)を含む9つの異なる社会バイアスカテゴリーを含むデータセットを構築した。
15のオープンソースモデルと1つの高度なクローズドソースモデルに対して広範な評価を行い、これらのモデルから明らかになったバイアスに関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-06-20T10:56:59Z) - The Pursuit of Fairness in Artificial Intelligence Models: A Survey [2.124791625488617]
この調査は、研究者がAIシステムの公正性を促進する方法の相乗効果を提供する。
AIモデルのバイアスを軽減するために研究者が採用したアプローチとテクニックについて、徹底的な研究がなされている。
また、偏見付きモデルがユーザエクスペリエンスに与える影響や、そのようなモデルの開発とデプロイにおいて考慮すべき倫理的考慮についても調べます。
論文 参考訳(メタデータ) (2024-03-26T02:33:36Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Debiasing Methods for Fairer Neural Models in Vision and Language
Research: A Survey [3.4767443062432326]
フェアネスを意識したニューラルネットワークの主なデバイアス法について,詳細な概要を述べる。
本研究では,公平性に関する嫌悪法に関する文献を整理する新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-11-10T14:42:46Z) - Bias and Fairness on Multimodal Emotion Detection Algorithms [0.0]
マルチモーダルアプローチがシステムのバイアスと公平性に与える影響について検討する。
テキストだけではバイアスが最小であり、モデルのパフォーマンスの大部分を占めています。
論文 参考訳(メタデータ) (2022-05-11T20:03:25Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Neural
Networks [7.763173131630868]
本稿では,2つのモデルのクラスワイドバイアスを定量的に評価する2つの指標を提案する。
これらの新しいメトリクスのパフォーマンスを評価し、その実践的応用を実証することにより、公平性だけでなくバイアスも測定できることを示す。
論文 参考訳(メタデータ) (2021-10-08T22:35:34Z) - UnQovering Stereotyping Biases via Underspecified Questions [68.81749777034409]
未特定質問からバイアスを探索・定量化するためのフレームワークUNQOVERを提案する。
モデルスコアの素直な使用は,2種類の推論誤差による誤ったバイアス推定につながる可能性があることを示す。
我々はこの指標を用いて、性別、国籍、民族、宗教の4つの重要なステレオタイプの分析を行う。
論文 参考訳(メタデータ) (2020-10-06T01:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。