Seeing Is Believing: Black-Box Membership Inference Attacks Against Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2406.19234v1
- Date: Thu, 27 Jun 2024 14:58:38 GMT
- Title: Seeing Is Believing: Black-Box Membership Inference Attacks Against Retrieval Augmented Generation
- Authors: Yuying Li, Gaoyang Liu, Yang Yang, Chen Wang,
- Abstract summary: We employ Membership Inference Attacks (MIA) to determine whether a sample is part of the knowledge database of a RAG system.
We then introduce two novel attack strategies: a Threshold-based Attack and a Machine Learning-based Attack.
Experimental validation of our methods has achieved a ROC AUC of 82%.
- Score: 9.731903665746918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) is a state-of-the-art technique that enhances Large Language Models (LLMs) by retrieving relevant knowledge from an external, non-parametric database. This approach aims to mitigate common LLM issues such as hallucinations and outdated knowledge. Although existing research has demonstrated security and privacy vulnerabilities within RAG systems, making them susceptible to attacks like jailbreaks and prompt injections, the security of the RAG system's external databases remains largely underexplored. In this paper, we employ Membership Inference Attacks (MIA) to determine whether a sample is part of the knowledge database of a RAG system, using only black-box API access. Our core hypothesis posits that if a sample is a member, it will exhibit significant similarity to the text generated by the RAG system. To test this, we compute the cosine similarity and the model's perplexity to establish a membership score, thereby building robust features. We then introduce two novel attack strategies: a Threshold-based Attack and a Machine Learning-based Attack, designed to accurately identify membership. Experimental validation of our methods has achieved a ROC AUC of 82%.
Related papers
- Fine-Grained Privacy Extraction from Retrieval-Augmented Generation Systems via Knowledge Asymmetry Exploitation [15.985529058573912]
Retrieval-augmented generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge bases.<n>Existing privacy attacks on RAG systems can trigger data leakage but often fail to accurately isolate knowledge-base-derived sentences within mixed responses.<n>This paper presents a novel black-box attack framework that exploits knowledge asymmetry between RAG and standard LLMs to achieve fine-grained privacy extraction.
arXiv Detail & Related papers (2025-07-31T03:50:16Z) - Safeguarding Privacy of Retrieval Data against Membership Inference Attacks: Is This Query Too Close to Home? [4.488261272565345]
Mirabel is a similarity-based MIA detection framework designed for the RAG system.<n>We show that simple detect-and-hide strategies can successfully obfuscate attackers, maintain data utility, and remain system-agnostic.
arXiv Detail & Related papers (2025-05-28T07:35:07Z) - Beyond Text: Unveiling Privacy Vulnerabilities in Multi-modal Retrieval-Augmented Generation [17.859942323017133]
We provide the first systematic analysis of MRAG privacy vulnerabilities across vision-language and speech-language modalities.<n>Our experiments reveal that LMMs can both directly generate outputs resembling retrieved content and produce descriptions that indirectly expose sensitive information.
arXiv Detail & Related papers (2025-05-20T05:37:22Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)
FedE4RAG facilitates collaborative training of client-side RAG retrieval models.
We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation [8.950307082012763]
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs)
We present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation.
MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks.
arXiv Detail & Related papers (2025-04-23T23:05:46Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks [18.576435409729655]
We propose an agent-based automated privacy attack called RAG-Thief.
It can extract a scalable amount of private data from the private database used in RAG applications.
Our findings highlight the privacy vulnerabilities in current RAG applications and underscore the pressing need for stronger safeguards.
arXiv Detail & Related papers (2024-11-21T13:18:03Z) - Ward: Provable RAG Dataset Inference via LLM Watermarks [6.112273651406279]
Retrieval-Augmented Generation (RAG) improves LLMs by enabling them to incorporate external data during generation.
This raises concerns for data owners regarding unauthorized use of their content in RAG systems.
We introduce Ward, a RAG-DI method based on LLM watermarks that enables data owners to obtain rigorous statistical guarantees regarding the usage of their dataset in a RAG system.
arXiv Detail & Related papers (2024-10-04T15:54:49Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
We introduce an efficient and easy-to-use method for conducting a Membership Inference Attack (MIA) against RAG systems.
We demonstrate the effectiveness of our attack using two benchmark datasets and multiple generative models.
Our findings highlight the importance of implementing security countermeasures in deployed RAG systems.
arXiv Detail & Related papers (2024-05-30T19:46:36Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.