論文の概要: Advection Augmented Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2406.19253v1
- Date: Thu, 27 Jun 2024 15:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:48:33.155471
- Title: Advection Augmented Convolutional Neural Networks
- Title(参考訳): アドベクション強化畳み込みニューラルネットワーク
- Authors: Niloufar Zakariaei, Siddharth Rout, Eldad Haber, Moshe Eliasof,
- Abstract要約: このような問題の解決に物理的にインスパイアされたアーキテクチャを導入する。
提案手法により,非局所的な情報変換が可能となることを示す。
次に、反応・拡散ニューラルネットワークを補完し、反応-拡散-拡散ネットワークを模倣するネットワークを形成する。
- 参考スコア(独自算出の注目度): 6.805997961535213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many problems in physical sciences are characterized by the prediction of space-time sequences. Such problems range from weather prediction to the analysis of disease propagation and video prediction. Modern techniques for the solution of these problems typically combine Convolution Neural Networks (CNN) architecture with a time prediction mechanism. However, oftentimes, such approaches underperform in the long-range propagation of information and lack explainability. In this work, we introduce a physically inspired architecture for the solution of such problems. Namely, we propose to augment CNNs with advection by designing a novel semi-Lagrangian push operator. We show that the proposed operator allows for the non-local transformation of information compared with standard convolutional kernels. We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion equation, in high dimensions. We demonstrate the effectiveness of our network on a number of spatio-temporal datasets that show their merit.
- Abstract(参考訳): 物理科学における多くの問題は、時空列の予測によって特徴づけられる。
このような問題は、天気予報から、病気の伝播とビデオ予測の分析まで様々である。
これらの問題を解決するための現代的な技術は、典型的には畳み込みニューラルネットワーク(CNN)アーキテクチャと時間予測機構を組み合わせたものである。
しかし、多くの場合、そのようなアプローチは、情報の長距離伝播や説明可能性の欠如において、不十分である。
本研究では,そのような問題の解決のための物理的にインスパイアされたアーキテクチャを提案する。
そこで我々は,新しい半ラグランジアンプッシュ演算子を設計することで,CNNを対流で拡張することを提案する。
提案した演算子は,標準的な畳み込みカーネルと比較して,非局所的な情報変換を可能にすることを示す。
次に、反応と拡散のニューラルネットワーク成分を補完し、高次元で反応-拡散-拡散方程式を模倣するネットワークを形成する。
提案手法の有効性を示す複数の時空間データセット上で,ネットワークの有効性を実証する。
関連論文リスト
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
逆問題に対する解を学ぶために訓練されたニューラルネットワークは、トレーニングセット上でも古典よりも優れた解を見つけることができることを示す。
高速な推論のために新しいデータに一般化するのではなく、既知のデータに対するより良い解決策を見つけるためにも使用できる。
論文 参考訳(メタデータ) (2024-08-15T12:38:10Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
時間に依存しない問題は、正確な予測を得るために、計算領域全体にわたる情報の長距離交換を必要とするという課題を生じさせる。
この課題を克服するために、Edge Augmented GNNとMulti-GNNの2つのグラフニューラルネットワーク(GNN)を提案する。
両ネットワークは,時間非依存の固体力学問題に適用した場合,ベースライン法よりも(1.5~2の係数で)有意に優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-03-28T02:04:43Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
本研究では,長期交通パラメータ予測問題に対処する新しい時空間ニューラルネットワークアーキテクチャを提案する。
注意機構は、遠方の入力から重要な情報を失うことなく、長期的な予測性能を保証する可能性がある。
論文 参考訳(メタデータ) (2022-10-01T05:58:22Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Space-Time Graph Neural Networks [104.55175325870195]
本研究では、時空間グラフニューラルネットワーク(ST-GNN)を導入し、時間変動ネットワークデータの時空間トポロジを共同処理する。
解析の結果,システムのネットワークトポロジと時間進化の変動はST-GNNの性能に大きく影響しないことがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:08:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。