論文の概要: MCNC: Manifold-Constrained Reparameterization for Neural Compression
- arxiv url: http://arxiv.org/abs/2406.19301v2
- Date: Fri, 25 Apr 2025 01:15:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.84304
- Title: MCNC: Manifold-Constrained Reparameterization for Neural Compression
- Title(参考訳): MCNC : ニューラル圧縮のためのマニフォールド拘束型リパラメトリゼーション
- Authors: Chayne Thrash, Ali Abbasi, Reed Andreas, Parsa Nooralinejad, Soroush Abbasi Koohpayegani, Hamed Pirsiavash, Soheil Kolouri,
- Abstract要約: 我々は,manifold-Constrained Neural Compression (MCNC)と呼ばれる新しいモデル圧縮法を提案する。
提案した多様体にパラメータ空間を制約することにより、高品質な解を特定できる。
提案手法は, 圧縮, 精度, モデル再構成時間において, 最先端のベースラインを著しく上回っている。
- 参考スコア(独自算出の注目度): 21.70510507535041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outstanding performance of large foundational models across diverse tasks, from computer vision to speech and natural language processing, has significantly increased their demand. However, storing and transmitting these models poses significant challenges due to their massive size (e.g., 750GB for Llama 3.1 405B). Recent literature has focused on compressing the original weights or reducing the number of parameters required for fine-tuning these models. These compression methods generally constrain the parameter space, for example, through low-rank reparametrization (e.g., LoRA), pruning, or quantization (e.g., QLoRA) during or after the model training. In this paper, we present a novel model compression method, which we term Manifold-Constrained Neural Compression (MCNC). This method constrains the parameter space to low-dimensional pre-defined and frozen nonlinear manifolds, which effectively cover this space. Given the prevalence of good solutions in over-parameterized deep neural networks, we show that by constraining the parameter space to our proposed manifold, we can identify high-quality solutions while achieving unprecedented compression rates across a wide variety of tasks and architectures. Through extensive experiments in computer vision and natural language processing tasks, we demonstrate that our method significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time. Our code is publicly available at https://github.com/mint-vu/MCNC.
- Abstract(参考訳): コンピュータビジョンから音声、自然言語処理に至るまで、様々なタスクにわたる大規模な基礎モデルの卓越した性能は、その需要を大幅に増加させてきた。
しかし、これらのモデルの保存と送信は、その巨大なサイズ(例えば、Llama 3.1 405Bの750GB)が大きな課題である。
近年の文献では、オリジナルの重量を圧縮したり、これらのモデルを微調整するのに必要なパラメータの数を減らしたりすることに重点を置いている。
これらの圧縮法は一般に、例えば低ランク再パラメータ化(例えば、LoRA)、プルーニング(pruning)、量子化(例えば、QLoRA)によってパラメータ空間を制約する。
本稿では,manifold-Constrained Neural Compression (MCNC)と呼ばれる新しいモデル圧縮手法を提案する。
この方法は、パラメータ空間を低次元の事前定義および凍結された非線形多様体に制約し、この空間を効果的にカバーする。
過パラメータ化ディープニューラルネットワークにおける良い解の出現率を考えると,提案する多様体にパラメータ空間を制約することにより,様々なタスクやアーキテクチャにおいて前例のない圧縮速度を達成しながら高品質な解を識別できることが示される。
コンピュータビジョンと自然言語処理タスクの広範な実験を通じて,提案手法は圧縮,精度,モデル再構成時間において,最先端のベースラインを著しく上回ることを示した。
私たちのコードはhttps://github.com/mint-vu/MCNC.comで公開されています。
関連論文リスト
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - Sparse Gradient Compression for Fine-Tuning Large Language Models [58.44973963468691]
ダウンストリームタスクのための微調整された大型言語モデル(LLM)は、広く利用されていることと、オープンソースモデルの利用が増加しているために、ますます重要になっている。
微調整に伴う高メモリコストは、特にモデルのサイズが大きくなるにつれて大きな課題である。
これらの制約に対処するためにスパース圧縮勾配(SGC)を提案する。
論文 参考訳(メタデータ) (2025-02-01T04:18:28Z) - Computer Vision Model Compression Techniques for Embedded Systems: A Survey [75.38606213726906]
本稿では,コンピュータビジョンタスクに適用される主モデル圧縮技術について述べる。
本稿では,圧縮サブ領域の特性について述べるとともに,異なるアプローチを比較し,最適な手法を選択する方法について論じる。
初期の実装課題を克服する上で、研究者や新しい実践者を支援するためのコードも共有しています。
論文 参考訳(メタデータ) (2024-08-15T16:41:55Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - A Survey on Transformer Compression [84.18094368700379]
自然言語処理(NLP)とコンピュータビジョン(CV)の領域においてトランスフォーマーは重要な役割を果たす
モデル圧縮法は、Transformerのメモリと計算コストを削減する。
この調査は、Transformerベースのモデルに適用することに焦点を当てた、最近の圧縮方法に関する包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-02-05T12:16:28Z) - CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks [1.5199992713356987]
本稿では、量子インスパイアされたネットワークを用いた革新的な圧縮手法であるCompactifAIを紹介する。
我々の手法は万能であり、他の圧縮技術で実装することができる。
ベンチマークとして、CompactifAIと量子化の組み合わせにより、LlaMA 7Bの93%のメモリサイズを削減できることを示す。
論文 参考訳(メタデータ) (2024-01-25T11:45:21Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models [9.91972450276408]
本稿では,Large Language Models (LLMs) のパラメトリックおよび実用的な圧縮に対して,低次モデリングに基づく革新的なアプローチを提案する。
本手法は, 行列分解を利用したモデル圧縮の顕著な進歩を示し, 最先端の構造化プルーニング法よりも優れた有効性を示した。
論文 参考訳(メタデータ) (2023-12-12T07:56:57Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
大規模言語モデル(LLM)は、より高速な推論、メモリフットプリントの縮小、ローカルデプロイメントを可能にする。
2つの標準的な圧縮手法はプルーニングと量子化であり、前者はモデル層における冗長な接続を排除し、後者はより少ないビットでモデルパラメータを表現する。
LLM圧縮に関する既存の研究は、主にパープレキシティやダウンストリームタスクの精度といった一般的な指標のパフォーマンスに焦点を当てている。
パラメトリックな知識を測定するような、よりきめ細かいメトリクスは、いまだにかなり過小評価されている。
論文 参考訳(メタデータ) (2023-12-01T22:27:12Z) - A priori compression of convolutional neural networks for wave
simulators [0.0]
現在のニューラルネットワークの設計には数百万のパラメータが含まれており、メモリに制限のあるデバイスにそのような複雑なモデルをインストールすることは困難である。
本稿では,ニューラルネットワークのトレーニングに先立って,畳み込み層を圧縮したテンソル形式,先行処理を提案する。
提案手法は,訓練可能なパラメータが少なく,メモリフットプリントも少ない古典的畳み込み層として同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-04-11T04:18:59Z) - Online Model Compression for Federated Learning with Large Models [8.48327410170884]
Online Model Compression (OMC) は、モデルパラメータを圧縮形式で格納し、必要に応じて圧縮するフレームワークである。
OMCは、モデルパラメータのメモリ使用量と通信コストを最大59%削減し、完全精度のトレーニングと比較すると、同等の精度とトレーニング速度が得られる。
論文 参考訳(メタデータ) (2022-05-06T22:43:03Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
BERTのような事前訓練された言語モデルは、様々な自然言語処理タスクにおいて顕著な効果を示している。
これらのモデルは通常、数百万のパラメータを含んでおり、リソースに制約のあるデバイスへの実践的なデプロイを妨げている。
本稿では,サブグループレベルでの量子化とプルーニングを同時に行うことができるBERT用に設計された混合精密量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-30T06:32:47Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - Compression strategies and space-conscious representations for deep
neural networks [0.3670422696827526]
近年のディープラーニングの進歩により、いくつかの実世界のアプリケーションで最先端のパフォーマンスを備えた強力な畳み込みニューラルネットワーク(CNN)が利用可能になった。
CNNには数百万のパラメータがあり、リソース制限のあるプラットフォームではデプロイできない。
本稿では,重み付けと量子化によるCNNの損失圧縮の影響について検討する。
論文 参考訳(メタデータ) (2020-07-15T19:41:19Z) - Self-Supervised GAN Compression [32.21713098893454]
従来の手法では,標準モデル圧縮手法であるウェイトプルーニングがGANに適用できないことを示す。
次に、訓練された判別器を用いて圧縮発電機の訓練を監督する自己教師圧縮手法を開発する。
我々は,このフレームワークが高い疎度に対して魅力的な性能を示し,新しいタスクやモデルに容易に適用できることを示し,異なるプルーニング粒度間の有意義な比較を可能にする。
論文 参考訳(メタデータ) (2020-07-03T04:18:54Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。