A Quantization-based Technique for Privacy Preserving Distributed Learning
- URL: http://arxiv.org/abs/2406.19418v1
- Date: Wed, 26 Jun 2024 14:54:12 GMT
- Title: A Quantization-based Technique for Privacy Preserving Distributed Learning
- Authors: Maurizio Colombo, Rasool Asal, Ernesto Damiani, Lamees Mahmoud AlQassem, Al Anoud Almemari, Yousof Alhammadi,
- Abstract summary: We describe a novel, regulation-compliant data protection technique for the distributed training of Machine Learning models.
Our method protects both training data and ML model parameters by employing a protocol based on a quantized multi-hash data representation Hash-Comb combined with randomization.
- Score: 2.2139875218234475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The massive deployment of Machine Learning (ML) models raises serious concerns about data protection. Privacy-enhancing technologies (PETs) offer a promising first step, but hard challenges persist in achieving confidentiality and differential privacy in distributed learning. In this paper, we describe a novel, regulation-compliant data protection technique for the distributed training of ML models, applicable throughout the ML life cycle regardless of the underlying ML architecture. Designed from the data owner's perspective, our method protects both training data and ML model parameters by employing a protocol based on a quantized multi-hash data representation Hash-Comb combined with randomization. The hyper-parameters of our scheme can be shared using standard Secure Multi-Party computation protocols. Our experimental results demonstrate the robustness and accuracy-preserving properties of our approach.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - RQP-SGD: Differential Private Machine Learning through Noisy SGD and
Randomized Quantization [8.04975023021212]
We present RQP-SGD, a new approach for privacy-preserving quantization to train machine learning models.
This approach combines differentially private gradient descent with randomized quantization, providing a measurable privacy guarantee.
arXiv Detail & Related papers (2024-02-09T18:34:08Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
Privacy-Preserving Machine Learning (PPML) methods have been introduced to safeguard the privacy and security of Machine Learning models.
Modern cryptographic scheme, Hybrid Homomorphic Encryption (HHE) has recently emerged.
We develop and evaluate an HHE-based PPML application for classifying heart disease based on sensitive ECG data.
arXiv Detail & Related papers (2024-01-26T13:12:52Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model.
One key motivation of such distributed frameworks is to provide privacy guarantees to the users.
We present a novel quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP.
arXiv Detail & Related papers (2023-12-10T04:44:53Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Privacy-Preserving Machine Learning: Methods, Challenges and Directions [4.711430413139393]
Well-designed privacy-preserving machine learning (PPML) solutions have attracted increasing research interest from academia and industry.
This paper systematically reviews existing privacy-preserving approaches and proposes a PGU model to guide evaluation for various PPML solutions.
arXiv Detail & Related papers (2021-08-10T02:58:31Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.