Magic phase transition and non-local complexity in generalized $W$ State
- URL: http://arxiv.org/abs/2406.19457v1
- Date: Thu, 27 Jun 2024 18:00:06 GMT
- Title: Magic phase transition and non-local complexity in generalized $W$ State
- Authors: A. G. Catalano, J. Odavić, G. Torre, A. Hamma, F. Franchini, S. M. Giampaolo,
- Abstract summary: We employ the Stabilizer Renyi Entropy (SRE) to characterize a quantum phase transition.
We show that SRE has a jump at the crossing points, while the entanglement entropy remains continuous.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We employ the Stabilizer Renyi Entropy (SRE) to characterize a quantum phase transition that has so far eluded any standard description and can thus now be explained in terms of the interplay between its non-stabilizer properties and entanglement. The transition under consideration separates a region with a unique ground state from one with a degenerate ground state manifold spanned by states with finite and opposite (intensive) momenta. We show that SRE has a jump at the crossing points, while the entanglement entropy remains continuous. Moreover, by leveraging on a Clifford circuit mapping, we connect the observed jump in SRE to that occurring between standard and generalized $W$-states with finite momenta. This mapping allows us to quantify the SRE discontinuity analytically.
Related papers
- Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)
We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Powering a quantum clock with a non-equilibrium steady state [50.24983453990065]
We propose powering a quantum clock with the non-thermal resources offered by the stationary state of an integrable quantum spin chain.
Using experimentally relevant examples of quantum spin chains, we suggest crossing a phase transition point is crucial for optimal performance.
arXiv Detail & Related papers (2024-12-17T17:25:11Z) - Mixed-state phase transitions in spin-Holstein models [5.900087161838199]
This work aims to extend the notion of mixed-state phases to the realm of coupled electron/spinphonon systems.
We consider a two-dimensional cluster Hamiltonian locally coupled to a set of single bosonic modes with arbitrary coupling strength.
We argue that both measures detect signatures of mixed-state phase transitions, albeit at different critical spin-phonon coupling strengths.
arXiv Detail & Related papers (2024-12-03T18:10:10Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Quasiperiodicity protects quantized transport in disordered systems without gaps [0.0]
We observe quantized currents that survive the addition of bounded local disorder in a driven Aubry-Andr'e-Harper chain.
We propose a protocol, directly realizable in for instance cold atoms or photonic experiments, which leverages this stability to prepare topological many-body states with high Chern numbers.
arXiv Detail & Related papers (2024-07-09T17:11:48Z) - Stability of mixed-state quantum phases via finite Markov length [0.0]
We propose Markov length, the length scale at which the quantum conditional mutual information (CMI) decays exponentially.
We show that the Markov length is finite everywhere except at its decodability transition, at which it diverges.
This implies that the mixed state phase transition coincides with the decodability transition and also suggests a quasi-local decoding channel.
arXiv Detail & Related papers (2024-04-10T18:00:00Z) - Symmetry-enforced many-body separability transitions [0.0]
We study quantum many-body mixed states with a symmetry from the perspective of separability.
We provide evidence for'symmetry-enforced separability transitions' in a variety of states.
arXiv Detail & Related papers (2023-10-11T08:18:51Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Complexity of frustration: a new source of non-local non-stabilizerness [0.0]
We advance the characterization of complexity in quantum many-body systems by examining $W$-states embedded in a spin chain.
Our work reveals that $W$-states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource.
arXiv Detail & Related papers (2022-09-21T17:59:40Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.