論文の概要: Unraveling Shadows: Exploring the Realm of Elite Cyber Spies
- arxiv url: http://arxiv.org/abs/2406.19489v1
- Date: Thu, 27 Jun 2024 19:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:41:35.456983
- Title: Unraveling Shadows: Exploring the Realm of Elite Cyber Spies
- Title(参考訳): シャドウを解き放つ! ネットスパイの世界を探る
- Authors: Fatemeh Khoda Parast,
- Abstract要約: 2015年にカスパースキー研究所が発見した高度な永続的脅威である方程式群は、レジンのマルウェアの調査中に検出された。
本研究は, グループによって残された遺物について検討し, それらの高度な方法を明らかにするとともに, セキュリティシステムによる検出を回避すべく, これらの遺物に埋め込まれた防御機構を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Equation Group, an advanced persistent threat identified by Kaspersky's Research Lab in 2015, was detected during the investigation of the Regin malware. Attributed to the United States National Security Agency, the Equation Group's techniques are more advanced than previously discovered threats. Despite being identified in 2015, detailed studies of their tactics, techniques, and procedures have been limited. This research examines the artifacts left by the group, revealing their advanced methodologies and analyzing the defensive mechanisms embedded within these artifacts designed to avoid detection by security systems. Additionally, solutions are proposed at various levels of the digital systems stack to counter the group's sophisticated attack strategies effectively.
- Abstract(参考訳): 2015年にカスパースキー研究所が発見した高度な永続的脅威である方程式群は、レジンのマルウェアの調査中に検出された。
アメリカ合衆国国家安全保障局(NSA)に委託されたEquation Groupの手法は、以前発見された脅威よりも先進的なものである。
2015年に特定されたにもかかわらず、彼らの戦術、技術、手順に関する詳細な研究は限られている。
本研究は, グループによって残されている遺物について検討し, それらの高度な方法を明らかにするとともに, セキュリティシステムによる検出を回避すべく, これらの遺物に埋め込まれた防御機構を解析する。
さらに、グループの高度な攻撃戦略を効果的に対処するために、デジタルシステムスタックの様々なレベルでソリューションが提案されている。
関連論文リスト
- Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning [26.403625710805418]
先進的永続脅威(Advanced Persistent Threats、APT)は、長期にわたって検出されていない能力によって特徴づけられる高度なサイバー攻撃である。
本稿では,前駆グラフとグラフ強化学習に基づく高度なAPT検出手法であるSlotを提案する。
Slotの卓越した精度、効率、適応性、そしてAPT検出の堅牢性を示し、ほとんどのメトリクスは最先端の手法を超越している。
論文 参考訳(メタデータ) (2024-10-23T14:28:32Z) - Counter Denial of Service for Next-Generation Networks within the Artificial Intelligence and Post-Quantum Era [2.156208381257605]
DoS攻撃はますます洗練され、容易に実行できるようになった。
最先端の体系化の取り組みには、孤立したDoS対策のような制限がある。
量子コンピュータの出現は、攻撃と防御の観点からのDoSのゲームチェンジャーである。
論文 参考訳(メタデータ) (2024-08-08T18:47:31Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
本稿では,デジタル攻撃に対する最先端の対面防止手法の脆弱性に光を当てる。
反偽造システムに遭遇する一般的な脅威を包括的に分類する。
論文 参考訳(メタデータ) (2024-06-06T02:05:35Z) - Unified Physical-Digital Attack Detection Challenge [70.67222784932528]
Face Anti-Spoofing (FAS) は、顔認識(FR)システムを保護するために重要である。
UniAttackDataは、Unified Detectionのための最大の公開データセットである。
我々は,一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元
論文 参考訳(メタデータ) (2024-04-09T11:00:11Z) - A Review and Comparison of AI Enhanced Side Channel Analysis [10.012903753622284]
サイドチャネル分析(SCA)は、現代のコンピューティングシステムにおいて、プライバシーとセキュリティに対する明らかな脅威である。
我々は、サイドチャネル分析のための最新の最先端ディープラーニング技術、それらの背後にある理論、その実施方法について検討する。
論文 参考訳(メタデータ) (2024-02-03T23:33:24Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Ensemble learning techniques for intrusion detection system in the
context of cybersecurity [0.0]
侵入検知システムの概念は、より良い結果を得るためにデータマイニングと機械学習オレンジツールを応用した。
本研究の目的は,SVM (Support Vector Machine) と kNearest Neighbour (kNN) アルゴリズムによって支援されたスタックリング手法を用いて,アンサンブル学習手法を検討することである。
論文 参考訳(メタデータ) (2022-12-21T10:50:54Z) - Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey [6.847009696437944]
我々は、サイバーセキュリティにおいて最も広く使われている2つのデータセット、すなわちKDDCUP'99とNSL-KDDデータセットで評価された研究に焦点を当てた。
本稿では,SVMの役割や研究に関わるアルゴリズムについて,各手法の概要について述べる。
論文 参考訳(メタデータ) (2022-09-12T20:02:12Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。