論文の概要: A Review and Comparison of AI Enhanced Side Channel Analysis
- arxiv url: http://arxiv.org/abs/2402.02299v1
- Date: Sat, 3 Feb 2024 23:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 20:52:07.706143
- Title: A Review and Comparison of AI Enhanced Side Channel Analysis
- Title(参考訳): AI強化サイドチャネル解析のレビューと比較
- Authors: Max Panoff, Honggang Yu, Haoqi Shan, Yier Jin
- Abstract要約: サイドチャネル分析(SCA)は、現代のコンピューティングシステムにおいて、プライバシーとセキュリティに対する明らかな脅威である。
我々は、サイドチャネル分析のための最新の最先端ディープラーニング技術、それらの背後にある理論、その実施方法について検討する。
- 参考スコア(独自算出の注目度): 10.012903753622284
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Side Channel Analysis (SCA) presents a clear threat to privacy and security
in modern computing systems. The vast majority of communications are secured
through cryptographic algorithms. These algorithms are often provably-secure
from a cryptographical perspective, but their implementation on real hardware
introduces vulnerabilities. Adversaries can exploit these vulnerabilities to
conduct SCA and recover confidential information, such as secret keys or
internal states. The threat of SCA has greatly increased as machine learning,
and in particular deep learning, enhanced attacks become more common. In this
work, we will examine the latest state-of-the-art deep learning techniques for
side channel analysis, the theory behind them, and how they are conducted. Our
focus will be on profiling attacks using deep learning techniques, but we will
also examine some new and emerging methodologies enhanced by deep learning
techniques, such as non-profiled attacks, artificial trace generation, and
others. Finally, different deep learning enhanced SCA schemes attempted against
the ANSSI SCA Database (ASCAD) and their relative performance will be evaluated
and compared. This will lead to new research directions to secure cryptographic
implementations against the latest SCA attacks.
- Abstract(参考訳): サイドチャネル分析(SCA)は、現代のコンピューティングシステムにおけるプライバシーとセキュリティに対する明確な脅威である。
ほとんどの通信は暗号アルゴリズムによって保護されている。
これらのアルゴリズムは、暗号的な観点からは、しばしば確実に安全であるが、実際のハードウェア上での実装は、脆弱性をもたらす。
管理者はこれらの脆弱性を利用してSCAを実行し、シークレットキーや内部状態などの機密情報を復元することができる。
SCAの脅威は機械学習によって大幅に増大し、特にディープラーニングでは攻撃の強化が一般的になっている。
本稿では,最先端の深層学習手法であるサイドチャネル解析,その背後にある理論,それらの実行方法について検討する。
我々は、ディープラーニング技術を用いたプロファイリング攻撃に焦点を当てるが、非目立った攻撃、人工的トレース生成など、ディープラーニング技術によって強化された新しい方法論についても検討する。
最後に、ANSSI SCA Database(ASCAD)に対して異なる深層学習拡張SCAスキームを試み、それらの相対性能を評価し比較する。
これにより、最新のSCA攻撃に対して暗号化実装をセキュアにするための新しい研究の方向性が導かれる。
関連論文リスト
- An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey [0.9567504785687562]
フィッシングは、サイバー犯罪者が潜在的な犠牲者から機密情報を入手する最も効果的な方法の1つである。
本研究では,最先端の機械学習とディープラーニングフィッシング検出技術について概説した。
論文 参考訳(メタデータ) (2024-11-24T05:20:09Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey [6.847009696437944]
我々は、サイバーセキュリティにおいて最も広く使われている2つのデータセット、すなわちKDDCUP'99とNSL-KDDデータセットで評価された研究に焦点を当てた。
本稿では,SVMの役割や研究に関わるアルゴリズムについて,各手法の概要について述べる。
論文 参考訳(メタデータ) (2022-09-12T20:02:12Z) - Automatic Mapping of Unstructured Cyber Threat Intelligence: An
Experimental Study [1.1470070927586016]
機械学習(ML)を用いた攻撃手法における非構造化サイバー脅威情報(CTI)の自動分類に関する実験的検討を行った。
CTI分析のための2つの新しいデータセットにコントリビュートし、従来の機械学習モデルとディープラーニングモデルの両方を含む、いくつかのMLモデルを評価した。
本稿では,このタスクにおいてMLがどのように機能するか,どの分類器が最善か,どの条件下か,その主な原因である分類誤り,CTI分析の課題について,いくつかの教訓を提示する。
論文 参考訳(メタデータ) (2022-08-25T15:01:42Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Deep Reinforcement Learning for Cybersecurity Threat Detection and
Protection: A Review [1.933681537640272]
ディープラーニングと機械学習ベースのソリューションは、脅威の検出と保護に使用されている。
深層強化学習(Deep Reinforcement Learning)は、これまで高度な人間の認識を必要としていた分野のためのAIベースのソリューションを開発する上で、非常に有望であることを示している。
教師付き機械やディープラーニングとは異なり、深層強化学習はより多様な方法で使われ、脅威防衛の分野で多くの革新的な応用に力を与えている。
論文 参考訳(メタデータ) (2022-06-06T16:42:00Z) - Where Did You Learn That From? Surprising Effectiveness of Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning [114.9857000195174]
深い強化学習を産業的に広く採用する上での大きな課題は、プライバシー侵害の潜在的な脆弱性である。
本稿では, 深層強化学習アルゴリズムの脆弱性を検証し, メンバーシップ推論攻撃に適応する対戦型攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-08T23:44:57Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。