論文の概要: Are Generative Language Models Multicultural? A Study on Hausa Culture and Emotions using ChatGPT
- arxiv url: http://arxiv.org/abs/2406.19504v1
- Date: Thu, 27 Jun 2024 19:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:31:50.652320
- Title: Are Generative Language Models Multicultural? A Study on Hausa Culture and Emotions using ChatGPT
- Title(参考訳): 生成言語モデルは多文化的か? : ChatGPTを用いたハウサ文化と感情に関する研究
- Authors: Ibrahim Said Ahmad, Shiran Dudy, Resmi Ramachandranpillai, Kenneth Church,
- Abstract要約: 我々は,ChatGPTが生成した回答と,母国語話者が提供した回答とを,文化的に関連のある37の質問に対して比較した。
以上の結果から,ChatGPTは人間の反応とある程度の類似性を持っているが,ハウサ文化と感情に対する知識と認識のギャップやバイアスも示している。
- 参考スコア(独自算出の注目度): 4.798444680860121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), such as ChatGPT, are widely used to generate content for various purposes and audiences. However, these models may not reflect the cultural and emotional diversity of their users, especially for low-resource languages. In this paper, we investigate how ChatGPT represents Hausa's culture and emotions. We compare responses generated by ChatGPT with those provided by native Hausa speakers on 37 culturally relevant questions. We conducted experiments using emotion analysis and applied two similarity metrics to measure the alignment between human and ChatGPT responses. We also collected human participants ratings and feedback on ChatGPT responses. Our results show that ChatGPT has some level of similarity to human responses, but also exhibits some gaps and biases in its knowledge and awareness of the Hausa culture and emotions. We discuss the implications and limitations of our methodology and analysis and suggest ways to improve the performance and evaluation of LLMs for low-resource languages.
- Abstract(参考訳): ChatGPTのような大規模言語モデル(LLM)は、様々な目的やオーディエンスのためのコンテンツを生成するために広く使われている。
しかし、これらのモデルは、特に低リソース言語において、ユーザの文化的、感情的な多様性を反映していないかもしれない。
本稿では,ChatGPTがハウサの文化と感情をどのように表現しているかを検討する。
我々は,ChatGPTが生成した回答と,母国語話者が提供した回答とを,文化的に関連のある37の質問に対して比較した。
我々は感情分析を用いて実験を行い、人間とChatGPTの反応のアライメントを測定するために2つの類似度指標を適用した。
また,ChatGPT反応に対する評価やフィードバックも収集した。
以上の結果から,ChatGPTは人間の反応とある程度の類似性を持っているが,ハウサ文化と感情に対する知識と認識のギャップやバイアスも示している。
我々は方法論と分析の意義と限界について議論し、低リソース言語におけるLLMの性能と評価を改善する方法について提案する。
関連論文リスト
- The high dimensional psychological profile and cultural bias of ChatGPT [11.607356361021482]
本研究は,ChatGPTを心理学的特徴の84次元で測定した。
ChatGPTの文化的価値パターンは、世界中の様々な国や地域のものと異なる。
異なる国・地域からの人間との交流を含む8つの意思決定課題におけるChatGPTの性能分析により,明らかに文化的ステレオタイプが明らかになった。
論文 参考訳(メタデータ) (2024-05-06T11:45:59Z) - A Linguistic Comparison between Human and ChatGPT-Generated Conversations [9.022590646680095]
この研究は、ChatGPTが生成した会話と人間の会話を比較して、言語問合せと単語数分析を取り入れている。
結果は,人間の対話における多様性と信頼度は高いが,ChatGPTは社会的プロセス,分析的スタイル,認知,注意的焦点,ポジティブな感情的トーンといったカテゴリーに優れていた。
論文 参考訳(メタデータ) (2024-01-29T21:43:27Z) - Primacy Effect of ChatGPT [69.49920102917598]
本稿では,ChatGPTの優位性について検討する。
実験と分析により、より信頼性の高いChatGPTベースのソリューションを構築する上で、さらなる洞察が得られればと思っています。
論文 参考訳(メタデータ) (2023-10-20T00:37:28Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Is ChatGPT Equipped with Emotional Dialogue Capabilities? [14.419588510681773]
本研究は、複数の下流課題における一連の実験を通して、感情的対話理解と生成におけるChatGPTの性能を評価する。
以上の結果から,ChatGPTの感情的対話理解能力は,教師付きモデルにはまだ及ばない可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-19T11:42:40Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Assessing Cross-Cultural Alignment between ChatGPT and Human Societies:
An Empirical Study [9.919972416590124]
ChatGPTは、対話で人間のような反応を生成できるという異常な能力で広く認知されている。
そこで我々は,ChatGPTの文化的背景を,人間の文化的差異を定量化するための質問に対する応答の分析によって検討した。
論文 参考訳(メタデータ) (2023-03-30T15:43:39Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
8種類の共通NLPアプリケーションタスクをカバーする23のデータセットを用いてChatGPTの広範な技術的評価を行う。
これらのデータセットと、新たに設計されたマルチモーダルデータセットに基づいて、ChatGPTのマルチタスク、マルチリンガル、マルチモーダルの側面を評価する。
ChatGPTの精度は平均63.41%で、論理的推論、非テキスト的推論、コモンセンス推論の10の異なる推論カテゴリで正確である。
論文 参考訳(メタデータ) (2023-02-08T12:35:34Z) - How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation,
and Detection [8.107721810172112]
ChatGPTは、幅広い人間の質問に効果的に反応できる。
人々はChatGPTのような大きな言語モデル(LLM)が社会に与える影響を心配し始めています。
本研究では,人間の専門家とChatGPTの双方から,数万件の比較回答を収集した。
論文 参考訳(メタデータ) (2023-01-18T15:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。