論文の概要: Is ChatGPT Equipped with Emotional Dialogue Capabilities?
- arxiv url: http://arxiv.org/abs/2304.09582v1
- Date: Wed, 19 Apr 2023 11:42:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 14:41:09.273534
- Title: Is ChatGPT Equipped with Emotional Dialogue Capabilities?
- Title(参考訳): ChatGPTは感情対話機能を備えているか?
- Authors: Weixiang Zhao, Yanyan Zhao, Xin Lu, Shilong Wang, Yanpeng Tong, Bing
Qin
- Abstract要約: 本研究は、複数の下流課題における一連の実験を通して、感情的対話理解と生成におけるChatGPTの性能を評価する。
以上の結果から,ChatGPTの感情的対話理解能力は,教師付きモデルにはまだ及ばない可能性が示唆された。
- 参考スコア(独自算出の注目度): 14.419588510681773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report presents a study on the emotional dialogue capability of ChatGPT,
an advanced language model developed by OpenAI. The study evaluates the
performance of ChatGPT on emotional dialogue understanding and generation
through a series of experiments on several downstream tasks. Our findings
indicate that while ChatGPT's performance on emotional dialogue understanding
may still lag behind that of supervised models, it exhibits promising results
in generating emotional responses. Furthermore, the study suggests potential
avenues for future research directions.
- Abstract(参考訳): 本稿では,openaiが開発した高度な言語モデルであるchatgptの感情対話能力について検討する。
本研究は、複数の下流課題における一連の実験を通して、感情的対話理解と生成におけるChatGPTの性能を評価する。
以上の結果から,chatgptの感情的対話理解能力は教師付きモデルに及ばないが,感情的反応を生じさせる有望な結果を示すことが示唆された。
さらに,本研究は今後の研究の道筋を示唆している。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - The Future of Learning: Large Language Models through the Lens of Students [20.64319102112755]
学生はChatGPTの効率を学習と情報探索に活用するというジレンマに悩まされる。
学生はChatGPTを従来のAIよりも「人間的」だと考えている。
論文 参考訳(メタデータ) (2024-07-17T16:40:37Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - A Linguistic Comparison between Human and ChatGPT-Generated Conversations [9.022590646680095]
この研究は、ChatGPTが生成した会話と人間の会話を比較して、言語問合せと単語数分析を取り入れている。
結果は,人間の対話における多様性と信頼度は高いが,ChatGPTは社会的プロセス,分析的スタイル,認知,注意的焦点,ポジティブな感情的トーンといったカテゴリーに優れていた。
論文 参考訳(メタデータ) (2024-01-29T21:43:27Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Leveraging Large Language Models for Automated Dialogue Analysis [12.116834890063146]
本稿では,現在最先端の大規模言語モデル(LLM)であるChatGPT-3.5を用いて,実際のロボット対話における9つのカテゴリの対話行動検出を行う。
以上の結果から, 特殊モデルもChatGPTもこの課題に満足できない結果が得られず, 人的性能に乏しいことが判明した。
論文 参考訳(メタデータ) (2023-09-12T18:03:55Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
本稿では、トピックセグメンテーションと談話解析という2つの談話分析タスクにおけるChatGPTの性能を体系的に検証する。
ChatGPTは、一般的なドメイン間会話においてトピック構造を特定する能力を示すが、特定のドメイン間会話ではかなり困難である。
我々のより深い調査は、ChatGPTは人間のアノテーションよりも合理的なトピック構造を提供するが、階層的なレトリック構造を線形に解析することしかできないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T07:14:41Z) - A Preliminary Evaluation of ChatGPT for Zero-shot Dialogue Understanding [55.37338324658501]
ゼロショット対話理解は、ユーザーのニーズをトレーニングデータなしで追跡できるようにすることを目的としている。
本研究では,ゼロショット対話理解タスクにおけるChatGPTの理解能力について検討する。
論文 参考訳(メタデータ) (2023-04-09T15:28:36Z) - Is ChatGPT A Good Keyphrase Generator? A Preliminary Study [51.863368917344864]
ChatGPTは最近、計算言語学コミュニティから大きな注目を集めている。
我々は、キーフレーズ生成プロンプト、キーフレーズ生成の多様性、長い文書理解など、様々な面でその性能を評価する。
その結果、ChatGPTは6つのプロンプトすべてに対して非常によく機能し、データセット間で小さなパフォーマンス差が観測されていることがわかった。
論文 参考訳(メタデータ) (2023-03-23T02:50:38Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。