Enforcing Equity in Neural Climate Emulators
- URL: http://arxiv.org/abs/2406.19636v1
- Date: Fri, 28 Jun 2024 03:47:54 GMT
- Title: Enforcing Equity in Neural Climate Emulators
- Authors: William Yik, Sam J. Silva,
- Abstract summary: We propose a custom loss function which punishes neural network emulators with unequal quality of predictions.
The loss function does not specify a particular definition of equity to bias the neural network towards.
Our results show that neural climate emulators trained with our loss function provide more equitable predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network emulators have become an invaluable tool for a wide variety of climate and weather prediction tasks. While showing incredibly promising results, these networks do not have an inherent ability to produce equitable predictions. That is, they are not guaranteed to provide a uniform quality of prediction along any particular class or group of people. This potential for inequitable predictions motivates the need for explicit representations of fairness in these neural networks. To that end, we draw on methods for enforcing analytical physical constraints in neural networks to bias networks towards more equitable predictions. We demonstrate the promise of this methodology using the task of climate model emulation. Specifically, we propose a custom loss function which punishes emulators with unequal quality of predictions across any prespecified regions or category, here defined using human development index (HDI). This loss function weighs a standard loss metric such as mean squared error against another metric which captures inequity along the equity category (HDI), allowing us to adjust the priority of each term before training. Importantly, the loss function does not specify a particular definition of equity to bias the neural network towards, opening the door for custom fairness metrics. Our results show that neural climate emulators trained with our loss function provide more equitable predictions and that the equity metric improves with greater weighting in the loss function. We empirically demonstrate that while there is a tradeoff between accuracy and equity when prioritizing the latter during training, an appropriate selection of the equity priority hyperparameter can minimize loss of performance.
Related papers
- Outage Performance and Novel Loss Function for an ML-Assisted Resource
Allocation: An Exact Analytical Framework [2.1397655110395752]
We introduce a novel loss function to minimize the outage probability of an ML-based resource allocation system.
An ML binary classification predictor assists in selecting a resource satisfying the established outage criterium.
arXiv Detail & Related papers (2023-05-16T18:23:52Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
We propose a new framework for evaluating the generalization capabilities of trained networks.
Specifically, we introduce two new measures for accurately predicting generalization gaps.
We attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition.
arXiv Detail & Related papers (2021-06-09T01:37:36Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes [0.15229257192293202]
This paper is the first to apply these techniques to predictive process monitoring.
We found that they contribute towards more accurate predictions and work quickly.
This leads to many interesting applications, enables an earlier adoption of prediction systems with smaller datasets and fosters a better cooperation with humans.
arXiv Detail & Related papers (2021-05-12T10:18:57Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Estimation with Uncertainty via Conditional Generative Adversarial
Networks [3.829070379776576]
We propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in conditional Generative Adversarial Network (cGAN)
By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model.
In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems.
arXiv Detail & Related papers (2020-07-01T08:54:17Z) - On the use of recurrent neural networks for predictions of turbulent
flows [1.95992742032823]
It is possible to obtain excellent predictions of the turbulence statistics with properly trained long short-term memory networks.
More sophisticated loss functions, including not only the instantaneous predictions but also the averaged behavior of the flow, may lead to much faster neural network training.
arXiv Detail & Related papers (2020-02-04T11:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.