論文の概要: Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient
- arxiv url: http://arxiv.org/abs/2406.19645v1
- Date: Fri, 28 Jun 2024 04:21:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:50:12.909745
- Title: Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient
- Title(参考訳): Sparse Surrogate Gradient を用いた時間スパイクニューラルネットワークの直接訓練
- Authors: Yang Li, Feifei Zhao, Dongcheng Zhao, Yi Zeng,
- Abstract要約: 脳にインスパイアされたスパイキングニューラルネットワーク(SNN)は、イベントベースのコンピューティングとエネルギー効率の良い機能によって、多くの注目を集めている。
本研究では,SNNの一般化能力を向上させるため,MSG(Masked Surrogate Gradients)を提案する。
- 参考スコア(独自算出の注目度): 8.516243389583702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features. However, the spiking all-or-none nature has prevented direct training of SNNs for various applications. The surrogate gradient (SG) algorithm has recently enabled spiking neural networks to shine in neuromorphic hardware. However, introducing surrogate gradients has caused SNNs to lose their original sparsity, thus leading to the potential performance loss. In this paper, we first analyze the current problem of direct training using SGs and then propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs. Moreover, we introduce a temporally weighted output (TWO) method to decode the network output, reinforcing the importance of correct timesteps. Extensive experiments on diverse network structures and datasets show that training with MSG and TWO surpasses the SOTA technique.
- Abstract(参考訳): 脳にインスパイアされたスパイキングニューラルネットワーク(SNN)は、イベントベースのコンピューティングとエネルギー効率の良い機能によって、多くの注目を集めている。
しかし、スパイクするオール・オア・ナインの性質は、様々な用途においてSNNの直接訓練を妨げている。
代理勾配(SG)アルゴリズムは、最近、スパイクニューラルネットワークがニューロモルフィックハードウェアで輝くことを可能にした。
しかし、サロゲート勾配を導入することで、SNNは元のスパシティを失うことになり、パフォーマンスが低下する可能性がある。
本稿では,まず,SGを用いた直接訓練の問題点を分析し,学習の有効性と勾配の疎度を両立させるため,MSG(Masked Surrogate Gradients)を提案し,SNNの一般化能力を向上させる。
さらに,ネットワーク出力を復号化するための時間重み付き出力(TWO)手法を導入し,正しい時間ステップの重要性を補強する。
多様なネットワーク構造とデータセットに関する大規模な実験は、MSGとTWOによるトレーニングがSOTA技術を上回ることを示している。
関連論文リスト
- Direct Learning-Based Deep Spiking Neural Networks: A Review [17.255056657521195]
スパイキングニューラルネットワーク(SNN)は、二分スパイク情報伝達機構を備えた有望な脳誘発計算モデルである。
本稿では,直接学習に基づく深部SNN研究について,主に精度向上法,効率改善法,時間的ダイナミクス利用法に分類する。
論文 参考訳(メタデータ) (2023-05-31T10:32:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Exact Gradient Computation for Spiking Neural Networks Through Forward
Propagation [39.33537954568678]
従来のニューラルネットワークに代わるものとして、スパイキングニューラルネットワーク(SNN)が登場している。
本稿では,SNNの正確な勾配を計算できるEmphforward propagation (FP)と呼ばれる新しいトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-18T20:28:21Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
スパイキングニューラルネットワーク(SNN)は、非同期離散性とスパース特性を持つニューラルネットワークである。
既存のスパイキング抑制残差ネットワーク(Spiking DS-ResNet)に基づくマルチレベル焼成(MLF)手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T16:39:46Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Temporal Efficient Training of Spiking Neural Network via Gradient
Re-weighting [29.685909045226847]
脳にインスパイアされたスパイクニューロンネットワーク(SNN)は、事象駆動的でエネルギー効率のよい特徴から、広く研究の関心を集めている。
シュロゲート勾配による現在の直接訓練手法は、一般化性に乏しいSNNに結果をもたらす。
SGによる勾配降下時の運動量の減少を補うための時間的効率訓練(TET)手法を導入する。
論文 参考訳(メタデータ) (2022-02-24T08:02:37Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep
Spiking Neural Networks by Training with Crafted Input Noise [13.904091056365765]
SNNトレーニングアルゴリズムは,入力ノイズを発生させるとともに,追加のトレーニング時間も発生しない。
通常の訓練された直接入力SNNと比較して、トレーニングされたモデルでは、最大13.7%の分類精度が向上した。
また,本モデルでは,レートコード入力を学習したSNNに対して,攻撃生成画像の分類性能が向上あるいは類似していることが特筆すべき点である。
論文 参考訳(メタデータ) (2021-10-06T16:48:48Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。