論文の概要: Enhancing Radiological Diagnosis: A Collaborative Approach Integrating AI and Human Expertise for Visual Miss Correction
- arxiv url: http://arxiv.org/abs/2406.19686v1
- Date: Fri, 28 Jun 2024 06:51:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:39:39.578035
- Title: Enhancing Radiological Diagnosis: A Collaborative Approach Integrating AI and Human Expertise for Visual Miss Correction
- Title(参考訳): 放射線診断の強化: 視覚的ミス訂正のためのAIと人間の専門知識を統合する協調的アプローチ
- Authors: Akash Awasthi, Ngan Le, Zhigang Deng, Carol C. Wu, Hien Van Nguyen,
- Abstract要約: CoRaXは、胸部放射線学の診断精度を高めるために、視線データと放射線学レポートを統合している。
CoRaXは28%(332)の異常を欠いた271サンプルのシミュレーションエラーデータセットで試験された。
このシステムはこれらのエラーの21%(332件中71件)を修正し、7%(312件中22件)を未解決に残した。
- 参考スコア(独自算出の注目度): 11.007862955517638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-AI collaboration to identify and correct perceptual errors in chest radiographs has not been previously explored. This study aimed to develop a collaborative AI system, CoRaX, which integrates eye gaze data and radiology reports to enhance diagnostic accuracy in chest radiology by pinpointing perceptual errors and refining the decision-making process. Using public datasets REFLACX and EGD-CXR, the study retrospectively developed CoRaX, employing a large multimodal model to analyze image embeddings, eye gaze data, and radiology reports. The system's effectiveness was evaluated based on its referral-making process, the quality of referrals, and performance in collaborative diagnostic settings. CoRaX was tested on a simulated error dataset of 271 samples with 28% (93 of 332) missed abnormalities. The system corrected 21% (71 of 332) of these errors, leaving 7% (22 of 312) unresolved. The Referral-Usefulness score, indicating the accuracy of predicted regions for all true referrals, was 0.63 (95% CI 0.59, 0.68). The Total-Usefulness score, reflecting the diagnostic accuracy of CoRaX's interactions with radiologists, showed that 84% (237 of 280) of these interactions had a score above 0.40. In conclusion, CoRaX efficiently collaborates with radiologists to address perceptual errors across various abnormalities, with potential applications in the education and training of novice radiologists.
- Abstract(参考訳): 胸部X線写真における知覚的誤りを識別し、正すための人間とAIのコラボレーションは、これまで検討されていない。
本研究では, 胸部放射線診断における診断精度を高めるために, 視線データと放射線診断情報を統合した協調型AIシステムであるCoRaXを開発することを目的とした。
公開データセット REFLACX と EGD-CXR を用いて、大規模なマルチモーダルモデルを用いて、画像埋め込み、視線データ、放射線学レポートを分析した。
本システムの有効性は, 基準作成プロセス, 基準の品質, 協調診断における性能に基づいて評価された。
CoRaXは28%(332)の異常を欠いた271サンプルのシミュレーションエラーデータセットで試験された。
このシステムはこれらのエラーの21%(332件中71件)を修正し、7%(312件中22件)を未解決に残した。
Referral-Usefulnessスコアは、すべての真の参照領域の予測領域の精度を示すもので、0.63(95% CI 0.59, 0.68)であった。
CoRaXの放射線学者との相互作用の診断精度を反映したTotal-Usefulnessスコアは、これらの相互作用の84%(280点中237点)が0.40点以上であった。
結論として、CoRaXは放射線科医と効率よく協力し、様々な異常にまたがる知覚的誤りに対処し、初心者放射線科医の教育や訓練に応用できる可能性がある。
関連論文リスト
- Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
本研究の目的は, 深層学習モデルに解剖学的認識を取り入れることで, 一般化性を高め, 疾患進行の予測を可能にするかを検討することである。
モデルの性能は, 受信機動作特性曲線(AUC)下の領域, 精度, 感度, 特異性を用いて比較した。
論文 参考訳(メタデータ) (2024-05-12T20:02:25Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - CIRCA: comprehensible online system in support of chest X-rays-based
COVID-19 diagnosis [37.41181188499616]
深層学習技術は、新型コロナウイルスの迅速検出と疾患の進行のモニタリングに役立つ。
5つの異なるデータセットを使用して、モデルトレーニングのための23の799 CXRの代表的なデータセットを構築した。
The U-Net-based model was developed to identified a clinically relevant region of the CXR。
論文 参考訳(メタデータ) (2022-10-11T13:30:34Z) - An Accurate and Explainable Deep Learning System Improves Interobserver
Agreement in the Interpretation of Chest Radiograph [0.33598755777055367]
VinDr-CXRは、CXRスキャンを複数の胸腺疾患に分類し、画像上の重要な発見のほとんどをローカライズすることができる。
提案システムにより,Fleiss' Kappa平均の1.5%の増加により,放射線学者間の合意が大幅に改善された。
論文 参考訳(メタデータ) (2022-08-06T17:03:49Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
PPKEDには、Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE), Multi-domain Knowledge Distiller (MKD)の3つのモジュールが含まれている。
PoKEは後部知識を探求し、視覚データのバイアスを軽減するために明確な異常な視覚領域を提供する。
PrKEは、以前の医学知識グラフ(医学知識)と以前の放射線学レポート(作業経験)から以前の知識を探り、テキストデータのバイアスを軽減する。
論文 参考訳(メタデータ) (2021-06-13T11:10:02Z) - A clinical validation of VinDr-CXR, an AI system for detecting abnormal
chest radiographs [0.0]
X線スキャンで異常を検出するためのAIベースのシステムを検証するメカニズムを実証する。
このシステムは、胸部X線上の異常を検出するためのF1スコア(リコールのハーモニック平均と精度-0.653 CI 0.635, 0.671)を達成する。
論文 参考訳(メタデータ) (2021-04-06T02:53:35Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z) - Artificial Intelligence applied to chest X-Ray images for the automatic
detection of COVID-19. A thoughtful evaluation approach [0.0]
論文では、79,500枚以上のX線画像のデータセットで畳み込みニューラルネットワークをトレーニングするプロセスについて述べる。
採用手法では、91.5%の分類精度が得られ、最悪のものの最も説明可能な実験に対する平均リコールは87.4%である。
論文 参考訳(メタデータ) (2020-11-29T02:48:39Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。