Nonlinear interferometry-based metrology of magneto-optical properties at infrared wavelengths
- URL: http://arxiv.org/abs/2406.19813v1
- Date: Fri, 28 Jun 2024 10:44:24 GMT
- Title: Nonlinear interferometry-based metrology of magneto-optical properties at infrared wavelengths
- Authors: Tanmoy Chakraborty, Thomas Produit, Harish N S Krishnamoorthy, Cesare Soci, Anna V. Paterova,
- Abstract summary: We propose and demonstrate a set of measurements based on nonlinear interferometry, which allows us investigating magneto-optical properties of materials at infrared wavelength range.
For a proof-of-principle study, we measure the Verdet constant of a bismuth-iron-garnet, over a spectral bandwidth of 600 nm in the near-IR range.
- Score: 15.079509975815572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magneto-optical properties of materials are utilized in numerous applications both in scientific research and industries. The novel properties of these materials can be further investigated by performing metrology in the infrared wavelength range, thereby enriching their potential applications. However, current infrared metrology techniques can be challenging and resource-intensive due to the unavailability of suitable components. To address these challenges, we propose and demonstrate a set of measurements based on nonlinear interferometry, which allows us investigating magneto-optical properties of materials at infrared wavelength range by performing optical detection at the visible range. For a proof-of-principle study, we measure the Verdet constant of a bismuth-iron-garnet, over a spectral bandwidth of 600 nm in the near-IR range.
Related papers
- Single photon optical bistability [55.2480439325792]
We investigate the bistability in a small Fabry-Perot interferometer (FPI) with the optical wavelength size cavity, the nonlinear Kerr medium and only a few photons, on average, excited by the external quantum field.
Multiple stationary states of the FPI cavity field with different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and the semiconductor-doped glass nonlinear medium.
arXiv Detail & Related papers (2023-04-15T10:44:51Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Broadband quantum spectroscopy at the fingerprint mid-infrared region [0.5249805590164902]
We show that the mid-IR fingerprints of the sample can be revealed from measurements in the near-IR range using conventional silicon photodetectors.
As a proof-of-concept, we perform spectroscopy of nitrous oxide gas in the 7.4-8.4 mum wavelength range, with the detection in the 865-877 nm range.
arXiv Detail & Related papers (2022-02-03T12:53:41Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - A high-sensitivity fiber-coupled diamond magnetometer with surface
coating [19.468384174783917]
Nitrogen-vacancy quantum defects in diamond offer a promising platform for magnetometry.
We present a high-sensitivity and wide-bandwidth fiber-based quantum magnetometer for practical applications.
arXiv Detail & Related papers (2021-02-24T11:53:03Z) - Nonlinear interferometer for Fourier-transform mid-infrared gas
spectroscopy using near-infrared detection [1.3968276272277327]
We demonstrate mid-infrared transmission spectroscopy in a nonlinear interferometer using single-pixel near-infrared detection and Fourier-transform analysis.
A sub-wavenumber spectral resolution allows for rotational-line-resolving spectroscopy of gaseous samples in a spectral bandwidth of over 700$,$cm$-1$.
arXiv Detail & Related papers (2020-11-19T10:51:18Z) - Nonlinear interferometry with infrared metasurfaces [0.4215938932388722]
We develop a new method for characterising infrared metasurfaces based on nonlinear interference.
We show that this concept can be used for broadband manipulation of the intensity profile of a visible beam using a single IR metasurface.
arXiv Detail & Related papers (2020-07-28T10:49:48Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z) - Hyperspectral Infrared Microscopy With Visible Light [0.4893345190925178]
We introduce a new approach to IR hyperspectral microscopy, where the IR spectral map of the sample is obtained with off-the-shelf components built for visible light.
The technique provides a wide field of view, fast readout, and negligible heat delivered to the sample, which makes it highly relevant to material and biological applications.
arXiv Detail & Related papers (2020-02-14T10:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.