論文の概要: BeamAggR: Beam Aggregation Reasoning over Multi-source Knowledge for Multi-hop Question Answering
- arxiv url: http://arxiv.org/abs/2406.19820v1
- Date: Fri, 28 Jun 2024 10:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:10:02.956582
- Title: BeamAggR: Beam Aggregation Reasoning over Multi-source Knowledge for Multi-hop Question Answering
- Title(参考訳): BeamAggR:Multi-hop Question Answeringのためのマルチソース知識に基づくビーム集約推論
- Authors: Zheng Chu, Jingchang Chen, Qianglong Chen, Haotian Wang, Kun Zhu, Xiyuan Du, Weijiang Yu, Ming Liu, Bing Qin,
- Abstract要約: 本研究では,知識集約型マルチホップQAの推論フレームワークであるBeamAggRを提案する。
複雑な質問を木に解析し、これには原子や複合的な質問が含まれる。
原子的問題に対して、LLMは答え候補を得るためにマルチソースの知識を推論する。
複合的な問題に対して、LLMはビーム候補を結合し、確率的集約を通じて複数の推論経路を探索し、最も有望な軌道を優先する。
- 参考スコア(独自算出の注目度): 29.442468366125986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated strong reasoning capabilities. Nevertheless, they still suffer from factual errors when tackling knowledge-intensive tasks. Retrieval-augmented reasoning represents a promising approach. However, significant challenges still persist, including inaccurate and insufficient retrieval for complex questions, as well as difficulty in integrating multi-source knowledge. To address this, we propose Beam Aggregation Reasoning, BeamAggR, a reasoning framework for knowledge-intensive multi-hop QA. BeamAggR explores and prioritizes promising answers at each hop of question. Concretely, we parse the complex questions into trees, which include atom and composite questions, followed by bottom-up reasoning. For atomic questions, the LLM conducts reasoning on multi-source knowledge to get answer candidates. For composite questions, the LLM combines beam candidates, explores multiple reasoning paths through probabilistic aggregation, and prioritizes the most promising trajectory. Extensive experiments on four open-domain multi-hop reasoning datasets show that our method significantly outperforms SOTA methods by 8.5%. Furthermore, our analysis reveals that BeamAggR elicits better knowledge collaboration and answer aggregation.
- Abstract(参考訳): 大規模言語モデル(LLM)は強力な推論能力を示している。
それでも、知識集約的なタスクに取り組む際には、事実的エラーに悩まされる。
Retrieval-augmented reasoningは有望なアプローチである。
しかし、複雑な問題に対する不正確かつ不十分な検索や、マルチソース知識の統合の難しさなど、重要な課題が今も続いている。
本研究では,知識集約型マルチホップQAの推論フレームワークであるビームアグリゲーション推論(ビームアグリゲーション推論)を提案する。
BeamAggRは、各ホップで有望な回答を探索し、優先順位付けする。
具体的には、複雑な質問を木に解析し、これには原子や複合的な質問が含まれる。
原子的問題に対して、LLMは答え候補を得るためにマルチソースの知識を推論する。
複合的な問題に対して、LLMはビーム候補を結合し、確率的集約を通じて複数の推論経路を探索し、最も有望な軌道を優先する。
4つのオープンドメインマルチホップ推論データセットの大規模な実験により、我々の手法はSOTA法を8.5%上回る結果となった。
さらに分析の結果,BeamAggRはより優れた知識コラボレーションと回答アグリゲーションを実現していることがわかった。
関連論文リスト
- Investigating How Large Language Models Leverage Internal Knowledge to Perform Complex Reasoning [30.349165483935682]
我々は,DepthQAデータセットを開発し,質問を3つの深さに分解する: (i)概念的知識の想起, (ii)手続き的知識の適用, (iii)戦略的知識の分析。
我々の分析では、より小さなモデルはより大きなモデルよりも多くの相違があることが示されている。
論文 参考訳(メタデータ) (2024-06-27T19:29:36Z) - Explainable Multi-hop Question Generation: An End-to-End Approach without Intermediate Question Labeling [6.635572580071933]
マルチホップ質問生成は、複数の文書に対して多段階の推論を必要とする複雑な質問を生成することを目的としている。
従来の研究では、コンテキスト文書の表現に基づいて質問をデコードするエンド・ツー・エンド・モデルが主流であった。
本稿では,逐次書き直しによる質問の複雑さを増大させるエンドツーエンドの質問書き直しモデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T06:03:54Z) - Retrieval-Enhanced Knowledge Editing for Multi-Hop Question Answering in Language Models [47.199078631274745]
大規模言語モデル(LLM)は質問応答タスクの習熟度を示しているが、しばしばリアルタイム知識更新の統合に苦慮している。
マルチホップ質問応答に適したRetrieval-Augmented Model Editing (RAE) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-28T17:47:19Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - GenDec: A robust generative Question-decomposition method for Multi-hop
reasoning [32.12904215053187]
マルチホップQAには、複雑な質問に答えるステップバイステップの推論が含まれる。
マルチホップ質問応答における既存の大規模言語モデル(LLM)推論能力は現在も探索が続けられている。
LLMが正しい結論に達するために望ましい推論連鎖に従うかどうかは不明である。
論文 参考訳(メタデータ) (2024-02-17T02:21:44Z) - Boosting of Thoughts: Trial-and-Error Problem Solving with Large
Language Models [48.43678591317425]
Boosting of Thoughts (BoT)は、大規模言語モデルによる問題解決のための自動プロンプトフレームワークである。
我々は,BoTが他の先進的なプロンプト手法よりも高い,あるいは同等の問題解決率を達成することを示す。
論文 参考訳(メタデータ) (2024-02-17T00:13:36Z) - Towards Top-Down Reasoning: An Explainable Multi-Agent Approach for Visual Question Answering [45.88079503965459]
視覚質問応答(VQA)の簡易化のために,視覚言語モデル(VLM)の拡張手法が提案されている。
本稿では,人間のようなトップダウン推論を模倣する新しいマルチエージェント協調フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-29T03:10:42Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge
Reasoning via Promoting Causal Consistency in LLMs [63.26541167737355]
知識に基づく推論における忠実さと因果性を高めるための枠組みを提案する。
我々のフレームワークは、最先端のアプローチを大きなマージンで比較している。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Locate Then Ask: Interpretable Stepwise Reasoning for Multi-hop Question
Answering [71.49131159045811]
マルチホップ推論では、複雑な質問に答えるために複数の文書を集約する必要がある。
既存の方法は通常、マルチホップの質問を単純なシングルホップの質問に分解する。
そこで本研究では,単一ホップ支援文識別と単一ホップ質問生成の両方を組み込む,解釈可能な段階的推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。