Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality
- URL: http://arxiv.org/abs/2406.19824v2
- Date: Wed, 3 Jul 2024 20:35:17 GMT
- Title: Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality
- Authors: Antoine Scheid, Aymeric Capitaine, Etienne Boursier, Eric Moulines, Michael I Jordan, Alain Durmus,
- Abstract summary: In economic theory, the concept of externality refers to any indirect effect resulting from an interaction between players that affects the social welfare.
Our work removes the classical assumption that bargainers possess perfect knowledge of the underlying game.
We then design a policy for the players which allows them to learn a bargaining strategy which maximizes the total welfare.
- Score: 62.18973784316808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In economic theory, the concept of externality refers to any indirect effect resulting from an interaction between players that affects the social welfare. Most of the models within which externality has been studied assume that agents have perfect knowledge of their environment and preferences. This is a major hindrance to the practical implementation of many proposed solutions. To address this issue, we consider a two-player bandit setting where the actions of one of the players affect the other player and we extend the Coase theorem [Coase, 1960]. This result shows that the optimal approach for maximizing the social welfare in the presence of externality is to establish property rights, i.e., enable transfers and bargaining between the players. Our work removes the classical assumption that bargainers possess perfect knowledge of the underlying game. We first demonstrate that in the absence of property rights, the social welfare breaks down. We then design a policy for the players which allows them to learn a bargaining strategy which maximizes the total welfare, recovering the Coase theorem under uncertainty.
Related papers
- Subsidy design for better social outcomes [24.2043855572415]
central planner can significantly mitigate these issues by injecting a subsidy to reduce certain costs associated with the system.
We show that designing subsidies that perfectly optimize the social good, in terms of minimizing the Price of Anarchy or preventing the information avoidance behavior, is computationally hard under standard complexity theoretic assumptions.
arXiv Detail & Related papers (2024-09-04T23:38:30Z) - Advantage Alignment Algorithms [20.125992203908744]
We introduce Advantage Alignment, a family of algorithms that perform opponent shaping efficiently and intuitively.
We achieve this by aligning the advantages of interacting agents, increasing the probability of mutually beneficial actions when their interaction has been positive.
We demonstrate the effectiveness of our algorithms across a range of social dilemmas, achieving state-of-the-art cooperation and robustness against exploitation.
arXiv Detail & Related papers (2024-06-20T18:30:09Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - How Bad is Selfish Driving? Bounding the Inefficiency of Equilibria in
Urban Driving Games [64.71476526716668]
We study the (in)efficiency of any equilibrium players might agree to play.
We obtain guarantees that refine existing bounds on the Price of Anarchy.
Although the obtained guarantees concern open-loop trajectories, we observe efficient equilibria even when agents employ closed-loop policies.
arXiv Detail & Related papers (2022-10-24T09:32:40Z) - Formal Contracts Mitigate Social Dilemmas in Multi-Agent RL [4.969697978555126]
Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous agents acting independently in a common environment.
MARL can lead to sub-optimal behavior when individual incentives and group incentives diverge.
We propose an augmentation to a Markov game where agents voluntarily agree to binding transfers of reward, under pre-specified conditions.
arXiv Detail & Related papers (2022-08-22T17:42:03Z) - Robust Allocations with Diversity Constraints [65.3799850959513]
We show that the Nash Welfare rule that maximizes product of agent values is uniquely positioned to be robust when diversity constraints are introduced.
We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules.
arXiv Detail & Related papers (2021-09-30T11:09:31Z) - Bounded rationality for relaxing best response and mutual consistency:
An information-theoretic model of partial self-reference [0.0]
This work focuses on some of the assumptions underlying rationality such as mutual consistency and best-response.
We consider ways to relax these assumptions using concepts from level-$k$ reasoning and quantal response equilibrium (QRE) respectively.
arXiv Detail & Related papers (2021-06-30T06:56:56Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z) - Fair Influence Maximization: A Welfare Optimization Approach [34.39574750992602]
We provide a principled characterization of the properties that a fair influence algorithm should satisfy.
Under this framework, the trade-off between fairness and efficiency can be controlled by a single design aversion parameter.
Our framework encompasses as special cases leximin and proportional fairness.
arXiv Detail & Related papers (2020-06-14T14:08:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.