論文の概要: Text2Robot: Evolutionary Robot Design from Text Descriptions
- arxiv url: http://arxiv.org/abs/2406.19963v2
- Date: Mon, 1 Jul 2024 14:05:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:30:11.859652
- Title: Text2Robot: Evolutionary Robot Design from Text Descriptions
- Title(参考訳): Text2Robot: テキスト記述による進化型ロボット設計
- Authors: Ryan P. Ringel, Zachary S. Charlick, Jiaxun Liu, Boxi Xia, Boyuan Chen,
- Abstract要約: ユーザテキスト仕様とパフォーマンス選好を物理的四足歩行ロボットに変換するフレームワークであるText2Robotを紹介した。
Text2Robotは、高速なプロトタイピングを可能にし、生成モデルによるロボットデザインの新しい機会を開く。
- 参考スコア(独自算出の注目度): 3.054307340752497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
- Abstract(参考訳): ロボットのデザインは伝統的にコストが高く、労働集約的だった。
自動化プロセスの進歩にもかかわらず、物理的に製造可能なロボットを生産しながら、広大なデザイン空間をナビゲートすることは依然として困難である。
ユーザテキスト仕様とパフォーマンス選好を物理的四足歩行ロボットに変換するフレームワークであるText2Robotを紹介した。
数分でText2Robotはテキストから3Dモデルを使って、多様な形態の強力な初期化を提供する。
1日以内に、我々の幾何学的処理アルゴリズムと身体制御の共最適化は、現実のエレクトロニクスと製造性を明確に考慮して歩行ロボットを生成する。
Text2Robotは、高速なプロトタイピングを可能にし、生成モデルによるロボットデザインの新しい機会を開く。
関連論文リスト
- Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Efficient automatic design of robots [43.968830087704035]
本研究では,ロボットの構造を1台のコンシューマ級コンピュータ上で数秒以内の所望の動作を示すために,初めて非ノボ最適化を示す。
他の勾配に基づくロボット設計法とは異なり、このアルゴリズムは特定の解剖学的形態を前提としていない。
この進歩は、医療、環境、車両、宇宙ベースのタスクのためのユニークで有用な機械の設計、製造、展開をほぼ瞬時に約束する。
論文 参考訳(メタデータ) (2023-06-05T21:30:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
四足歩行ロボットのための汎用ロコモーション(GenLoco)コントローラを訓練するためのフレームワークを提案する。
本フレームワークは,多種多様な四足歩行ロボットに展開可能な汎用ロコモーションコントローラを合成する。
我々のモデルは、より一般的な制御戦略を取得し、新しいシミュレーションロボットや実世界のロボットに直接移行できることを示す。
論文 参考訳(メタデータ) (2022-09-12T15:14:32Z) - Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots [29.02903745467536]
ソフトロボットの設計と制御を最適化する最初の大規模ベンチマークであるEvolution Gymを提案する。
私たちのベンチマーク環境は、様々な種類の地形の移動や操作など、幅広いタスクにまたがっています。
我々は,最先端設計最適化手法と深層強化学習手法を組み合わせることで,複数のロボット共進化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-01-24T18:39:22Z) - Learning Locomotion Skills in Evolvable Robots [10.167123492952694]
本稿では,任意の形状のモジュール型ロボットが目標に向かって歩いたり,移動した場合にこの目標に従うことを学習できるようにするための,コントローラアーキテクチャと汎用学習手法を提案する。
我々のアプローチは、現実世界の3つのシナリオにおいて、クモ、ヤモリ、そしてその子孫の3つのロボットに対して検証されている。
論文 参考訳(メタデータ) (2020-10-19T14:01:50Z) - Diversity-based Design Assist for Large Legged Robots [4.505477982701834]
高さ約2mの大型脚ロボットの設計空間を探索するが、その設計と構造はよく研究されていない。
新たなロボットエンコーディングにより、足が体の長さに沿ってスケーリングするなど、バイオインスパイアされた特徴を実現できる。
論文 参考訳(メタデータ) (2020-04-17T03:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。