論文の概要: A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
- arxiv url: http://arxiv.org/abs/2407.00040v1
- Date: Wed, 29 May 2024 06:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:38:24.173791
- Title: A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
- Title(参考訳): 早期軽度認知障害の解剖学的バイオマーカー同定のための機械学習アプローチ
- Authors: Alwani Liyana Ahmad, Jose Sanchez-Bornot, Roberto C. Sotero, Damien Coyle, Zamzuri Idris, Ibrahima Faye,
- Abstract要約: アルツハイマー病(英語: Alzheimer's Disease、AD)は、認知機能や運動機能に障害を与え、老化に主に影響を及ぼす進行性神経変性疾患である。
本研究では,MRIを用いたバイオマーカー選択のための機械学習手法の包括的解析を行うことを目的とする。
角膜皮質、海馬、側心室、眼窩前頭皮質などの脳領域は、初期の認知機能低下の過程で大きな影響を及ぼすと考えられている。
- 参考スコア(独自算出の注目度): 2.9027661868249255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that primarily affects the aging population by impairing cognitive and motor functions. Early detection of AD through accessible methodologies like magnetic resonance imaging (MRI) is vital for developing effective interventions to halt or slow the disease's progression. This study aims to perform a comprehensive analysis of machine learning techniques for selecting MRI-based biomarkers and classifying individuals into healthy controls (HC) and unstable controls (uHC) who later show mild cognitive impairment within five years. The research utilizes MRI data from the Alzheimer's Disease Neuroinformatics Initiative (ADNI) and the Open Access Series of Imaging Studies 3 (OASIS-3), focusing on both HC and uHC participants. The study addresses the challenges of imbalanced data by testing classification methods on balanced and unbalanced datasets, and harmonizes data using polynomial regression to mitigate nuisance variables like age, gender, and intracranial volume. Results indicate that Gaussian Naive Bayes and RusBoost classifiers shows an optimal performance, achieving accuracies of up to 76.46% and 72.48% respectively on the ADNI dataset. For the OASIS-3 dataset, Kernel Naive Bayes and RusBoost yield accuracies ranging from 64.66% to 75.71%, improving further in age-matched datasets. Brain regions like the entorhinal cortex, hippocampus, lateral ventricle, and lateral orbitofrontal cortex are identified as significantly impacted during early cognitive decline. Despite limitations such as small sample sizes, the study's harmonization approach enhances the robustness of biomarker selection, suggesting the potential of this semi-automatic machine learning pipeline for early AD detection using MRI.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's Disease、AD)は、認知機能や運動機能に障害を与え、高齢化に主に影響を及ぼす進行性神経変性疾患である。
磁気共鳴画像(MRI)のようなアクセス可能な方法でADを早期に検出することは、疾患の進行を停止または遅らせるための効果的な介入を開発するために不可欠である。
本研究の目的は、MRIベースのバイオマーカーを選択し、個人を健康的なコントロール(HC)と不安定なコントロール(uHC)に分類する機械学習手法を網羅的に分析することである。
この研究は、アルツハイマー病ニューロインフォマティクスイニシアチブ(ADNI)とOASIS-3(Open Access Series of Imaging Studies)のMRIデータを利用しており、HCとuHCの両方の参加者に焦点を当てている。
この研究は、バランスの取れたデータセットとバランスの取れていないデータセットの分類法をテストすることで、不均衡なデータの課題に対処し、多項式回帰を用いてデータを調和させて、年齢、性別、頭蓋内容積などのニュアンス変数を緩和する。
その結果、Gaussian Naive Bayes と RusBoost の分類器は最適な性能を示し、それぞれ ADNI データセット上で76.46% と 72.48% の精度を達成した。
OASIS-3データセットでは、Kernel Naive BayesとRusBoostは64.66%から75.71%のアキュラシーを発生させ、年齢に合わせたデータセットをさらに改善した。
後角皮質、海馬、外側心室、外側眼窩前頭皮質などの脳領域は、早期の認知機能低下の過程で大きな影響が認められる。
小さなサンプルサイズのような制限にもかかわらず、この研究の調和化アプローチはバイオマーカーの選択の堅牢性を高め、MRIを用いた早期AD検出のための半自動機械学習パイプラインの可能性を示している。
関連論文リスト
- AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [45.630166504856255]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
この研究は、アルツハイマー病神経画像イニシアチブ(ADNI)データセットに基づいている。
アルツハイマー病(AD)の早期発見と進行の解明を目的とする。
論文 参考訳(メタデータ) (2024-02-13T15:43:30Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:44:28Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
経頭蓋磁気刺激(TMS)と脳波記録(TMS-EEG)を組み合わせることで、脳、特にアルツハイマー病(AD)の研究に大きな可能性を示す。
本研究では,脳機能の変化を反映した電位指標として,脳波信号のTMS誘発摂動の持続時間を自動的に決定する手法を提案する。
論文 参考訳(メタデータ) (2022-04-29T19:27:06Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural
Network with Multidata Analysis [8.118172725250805]
本研究では,軽度認知障害患者の認知低下率を予測する機械学習システムについて検討した。
我々は3次元畳み込みニューラルネットワークを用いた教師付きハイブリッドニューラルネットワークに基づく予測モデルを構築した。
論文 参考訳(メタデータ) (2020-02-24T01:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。