論文の概要: A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
- arxiv url: http://arxiv.org/abs/2407.00040v2
- Date: Fri, 9 Aug 2024 02:00:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 18:09:10.957755
- Title: A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
- Title(参考訳): 早期軽度認知障害の解剖学的バイオマーカー同定のための機械学習アプローチ
- Authors: Alwani Liyana Ahmad, Jose Sanchez-Bornot, Roberto C. Sotero, Damien Coyle, Zamzuri Idris, Ibrahima Faye,
- Abstract要約: アルツハイマー病は重要な課題であり、効果的な介入のために早期発見が必要である。
本研究では、MRIに基づくバイオマーカーの選択と分類のための機械学習手法を解析し、5年以内に健康的なコントロールと軽度の認知障害を区別する。
- 参考スコア(独自算出の注目度): 2.9027661868249255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer Disease poses a significant challenge, necessitating early detection for effective intervention. MRI is a key neuroimaging tool due to its ease of use and cost effectiveness. This study analyzes machine learning methods for MRI based biomarker selection and classification to distinguish between healthy controls and those who develop mild cognitive impairment within five years. Using 3 Tesla MRI data from ADNI and OASIS 3, we applied various machine learning techniques, including MATLAB Classification Learner app, nested cross validation, and Bayesian optimization. Data harmonization with polynomial regression improved performance. Consistent features identified were the entorhinal, hippocampus, lateral ventricle, and lateral orbitofrontal regions. For balanced ADNI data, Naive Bayes with z score harmonization performed best. For balanced OASIS 3, SVM with z score correction excelled. In imbalanced data, RUSBoost showed strong performance on ADNI and OASIS 3. Z score harmonization highlighted the potential of a semi automatic pipeline for early AD detection using MRI.
- Abstract(参考訳): アルツハイマー病は重要な課題であり、効果的な介入のために早期発見が必要である。
MRIは、使いやすさとコスト効率のため、重要なニューロイメージングツールである。
本研究では、MRIに基づくバイオマーカーの選択と分類のための機械学習手法を解析し、健康なコントロールと5年以内に軽度認知障害を発症した人とを区別する。
ADNIとOASIS 3の3つのTesla MRIデータを用いて,MATLAB分類学習アプリ,ネストクロスバリデーション,ベイズ最適化など,さまざまな機械学習手法を適用した。
多項式回帰によるデータ調和により性能が向上した。
内鼻,海馬, 側室, 前頭前野が特徴であった。
バランスの取れたADNIデータに対して、zスコア調和のNaive Bayesが最善を尽くした。
バランスの取れたOASIS 3では、zスコア補正のSVMが優れていた。
不均衡データでは、RUSBoostはADNIとOASIS 3で高い性能を示した。
Zスコア調和はMRIを用いた早期AD検出のための半自動パイプラインの可能性を強調した。
関連論文リスト
- GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、軽度認知障害(MCI)から進行する可逆性神経変性疾患である。
生成特徴抽出(GFE)に基づく分類器GFE-Mambaを紹介する。
評価尺度、MRI、PETのデータを統合し、より深いマルチモーダル融合を可能にする。
GFE-MambaモデルがMCIからADへの変換予測に有効であることを示す。
論文 参考訳(メタデータ) (2024-07-22T15:22:33Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Enhancing MRI-Based Classification of Alzheimer's Disease with Explainable 3D Hybrid Compact Convolutional Transformers [13.743241062824548]
アルツハイマー病(AD: Alzheimer's disease)は、世界的な健康問題である。
従来の分析手法は、AD識別に不可欠な複雑な3Dパターンの識別に苦慮することが多い。
3D Hybrid Convolutional Transformer 3D (HCCT) について紹介する。
論文 参考訳(メタデータ) (2024-03-24T14:35:06Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Behavior Score-Embedded Brain Encoder Network for Improved
Classification of Alzheimer Disease Using Resting State fMRI [36.40726715739385]
本稿では、日常的に管理される心理検査情報を、被験者の静止状態fMRIデータの符号化手順に統合する行動スコア埋め込みエンコーダネットワーク(BSEN)を提案する。
BSENは、MMSE(MiniMental State Examination)とCDR(Citical Dementia Rating)の行動スコアを併用した3次元畳み込み自己エンコーダ構造に基づく。
提案するBSENを用いた分類フレームワークは, 総合的認識精度59.44%(AD, MCI, Healthy Control)を達成し, 健康管理(HC)と健康管理(HC)の最も差別的な領域を抽出した。
論文 参考訳(メタデータ) (2022-11-04T09:58:45Z) - Hybrid Reinforced Medical Report Generation with M-Linear Attention and
Repetition Penalty [45.92216112110279]
そこで本研究では,m-linear attentionと繰り返しペナルティ機構を備えたハイブリッド型医療報告生成手法を提案する。
具体的には、異なる重みを持つハイブリッド報酬を用いて、シングルメトリックベースの報酬の制限を緩和する。
また,最適な重みの組み合わせを近似するために,線形複雑度をもつ探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-14T15:27:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improving 3D convolutional neural network comprehensibility via
interactive visualization of relevance maps: Evaluation in Alzheimer's
disease [0.8031935951075242]
畳み込みニューラルネットワーク(CNN)は、磁気共鳴イメージング(MRI)スキャンに基づいてアルツハイマー病(AD)認知症を検出する高い診断精度を実現します。
この理由の1つは、モデル理解性の欠如である。
より精度の高いモデルは、事前知識によって事前に定義された差別的脳領域にも依存するかどうかを検討した。
論文 参考訳(メタデータ) (2020-12-18T15:16:50Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
AUCスコアに対する新たなマージンベースサロゲート損失関数を提案する。
一般的に使用されるものよりも頑丈である。
大規模な最適化の観点からも同じ利点を享受しながら、正方損失。
私たちの知る限りでは、DAMが大規模医療画像データセットで成功するのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-06T03:41:51Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。