論文の概要: A First Principles Approach to Trust-Based Recommendation Systems
- arxiv url: http://arxiv.org/abs/2407.00062v1
- Date: Mon, 17 Jun 2024 05:23:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:41:13.424150
- Title: A First Principles Approach to Trust-Based Recommendation Systems
- Title(参考訳): 信頼に基づくレコメンデーションシステムへの第一原理的アプローチ
- Authors: Paras Stefanopoulos, Ahad N. Zehmakan, Sourin Chatterjee,
- Abstract要約: 協調フィルタリング手法では,項目分類情報は他の情報種別よりも影響が大きいことを示す。
信頼グラフに基づくアプローチは、信頼構造が難しいため、ネットワークの敵攻撃に対してより堅牢であることが判明した。
- 参考スコア(独自算出の注目度): 4.833815605196965
- License:
- Abstract: This paper explores recommender systems in social networks which leverage information such as item rating, intra-item similarities, and trust graph. We demonstrate that item-rating information is more influential than other information types in a collaborative filtering approach. The trust graph-based approaches were found to be more robust to network adversarial attacks due to hard-to-manipulate trust structures. Intra-item information, although sub-optimal in isolation, enhances the consistency of predictions and lower-end performance when fused with other information forms. Additionally, the Weighted Average framework is introduced, enabling the construction of recommendation systems around any user-to-user similarity metric.
- Abstract(参考訳): 本稿では,項目評価,項目内類似性,信頼グラフなどの情報を活用するソーシャルネットワークにおける推薦システムについて検討する。
協調フィルタリング手法では,項目分類情報は他の情報型よりも影響が大きいことを示す。
信頼グラフに基づくアプローチは、信頼構造が難しいため、ネットワークの敵攻撃に対してより堅牢であることが判明した。
サイト内情報は、サブ最適であるが、他の情報形式と融合した場合、予測とローエンドパフォーマンスの整合性を高める。
さらに、Weighted Averageフレームワークが導入され、任意のユーザ間類似度メトリックに関するレコメンデーションシステムの構築が可能になった。
関連論文リスト
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
レコメンダシステムは、ユーザの履歴データを利用して顧客の興味を推測し、パーソナライズされたレコメンデーションを提供する。
協調フィルタリング(Collaborative filtering)は、複数のユーザのレーティングを使用して、欠落したレーティングを予測するレコメンデーションアルゴリズムの1つである。
Recommender システムはより複雑になり、コンテンツベースの属性やユーザインタラクション、コンテキスト情報などの補助的なデータを組み込むことができる。
論文 参考訳(メタデータ) (2024-11-04T06:31:52Z) - Making Recommender Systems More Knowledgeable: A Framework to Incorporate Side Information [5.033504076393256]
本稿では,商品別サイド情報をレコメンダシステムに組み込んでパフォーマンスを高めるための汎用フレームワークを提案する。
副次的な情報により、我々の推薦システムは最先端のモデルよりもかなりのマージンで優れていることを示す。
また、リコメンデータシステムで使用される注意機構を標準化し、モデル性能への影響を評価するために、新しいタイプの損失を提案する。
論文 参考訳(メタデータ) (2024-06-02T04:33:52Z) - Information Fusion for Assistance Systems in Production Assessment [49.40442046458756]
証拠理論を用いたn個の情報ソースの融合のための枠組みを提供する。
本稿では,機械データに基づくアンサンブル分類器とエキスパート中心モデルという,2つの主要な情報源の情報融合手法を提案する。
本稿では,エビデンス理論を用いたモデル更新手法を提案することにより,データドリフトの問題に対処する。
論文 参考訳(メタデータ) (2023-08-31T22:08:01Z) - KGTrust: Evaluating Trustworthiness of SIoT via Knowledge Enhanced Graph
Neural Networks [63.531790269009704]
ソーシャル・インターネット・オブ・モノ(Social Internet of Things, SIoT)は、スマート・オブジェクト(物)にソーシャルネットワークの概念を注入する、有望で新興のパラダイムである。
リスクと不確実性のため、解決すべき重要かつ緊急の問題は、SIoT内で信頼性の高い関係、すなわち信頼評価を確立することである。
本稿では,SIoTにおける信頼度向上のための知識強化グラフニューラルネットワーク(KGTrust)を提案する。
論文 参考訳(メタデータ) (2023-02-22T14:24:45Z) - A Recommendation Approach based on Similarity-Popularity Models of
Complex Networks [1.385805101975528]
そこで本研究では,類似性傾向モデルにより生成された複雑なネットワークをベースとした新しい推薦手法を提案する。
まず、観測されたレーティングからユーザとアイテムをノードとして持つネットワークモデルを構築し、そのモデルを用いて未知のレーティングを予測する。
提案手法は, 各種ドメインの21データセットに対して, ベースラインと最先端のレコメンデーション手法に対して, 提案手法を実装, 実験的に比較した。
論文 参考訳(メタデータ) (2022-09-29T11:00:06Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
我々は、主に良いアイテムを含むことを厳格に保証されたアイテムのセットを返す方法を示す。
本手法は, 擬似発見率の厳密な有限サンプル制御によるランキングモデルを提供する。
我々はYahoo!のランキングとMSMarcoデータセットの学習方法を評価する。
論文 参考訳(メタデータ) (2022-07-04T17:49:25Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
他のエージェントの戦略に対する不確実性下での最適適応行動は、インタラクティブベイズ強化学習フレームワークを用いて計算することができる。
本稿では,メタラーン近似的信念推論とベイズ最適行動を提案する。
提案手法は, モデルフリーアプローチ, 近似後部からのサンプル採取, 他者のメモリフリーモデル維持, あるいは環境の既知の構造を完全に活用しない既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-11T13:25:13Z) - Multi-faceted Trust-based Collaborative Filtering [4.640835690336653]
本稿では,ソーシャルリンクによって表現されるローカル信頼と,ソーシャルネットワークによって提供されるさまざまなグローバル信頼証拠を統合するための多面的信頼モデルを提案する。
Yelpは、ユーザ間の汎用的な友人関係を公開するが、異なるタイプの信頼フィードバックを提供する。
実験の結果、Yelpのデータセットでは、私たちのモデルはU2UCFと最先端の信頼ベースのレコメンデータの両方より優れています。
論文 参考訳(メタデータ) (2020-03-25T15:27:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。