Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2407.00072v3
- Date: Thu, 11 Jul 2024 09:28:34 GMT
- Title: Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
- Authors: Yu Bai, Yukai Miao, Li Chen, Dan Li, Yanyu Ren, Hongtao Xie, Ce Yang, Xuhui Cai,
- Abstract summary: Pistis-RAG is a scalable multi-stage framework designed to address the challenges of large-scale retrieval-augmented generation (RAG) systems.
Our framework consists of distinct stages: matching, pre-ranking, ranking, reasoning, and aggregating.
Our novel ranking stage is designed specifically for RAG systems, incorporating principles of information retrieval.
- Score: 36.50624138061438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Greek mythology, Pistis symbolized good faith, trust, and reliability. Drawing inspiration from these principles, Pistis-RAG is a scalable multi-stage framework designed to address the challenges of large-scale retrieval-augmented generation (RAG) systems. This framework consists of distinct stages: matching, pre-ranking, ranking, reasoning, and aggregating. Each stage contributes to narrowing the search space, prioritizing semantically relevant documents, aligning with the large language model's (LLM) preferences, supporting complex chain-of-thought (CoT) methods, and combining information from multiple sources. Our ranking stage introduces a significant innovation by recognizing that semantic relevance alone may not lead to improved generation quality, due to the sensitivity of the few-shot prompt order, as noted in previous research. This critical aspect is often overlooked in current RAG frameworks. We argue that the alignment issue between LLMs and external knowledge ranking methods is tied to the model-centric paradigm dominant in RAG systems. We propose a content-centric approach, emphasizing seamless integration between LLMs and external information sources to optimize content transformation for specific tasks. Our novel ranking stage is designed specifically for RAG systems, incorporating principles of information retrieval while considering the unique business scenarios reflected in LLM preferences and user feedback. We simulated feedback signals on the MMLU benchmark, resulting in a 9.3% performance improvement. Our model and code will be open-sourced on GitHub. Additionally, experiments on real-world, large-scale data validate the scalability of our framework.
Related papers
- End-to-End Personalization: Unifying Recommender Systems with Large Language Models [0.0]
We propose a novel hybrid recommendation framework that combines Graph Attention Networks (GATs) with Large Language Models (LLMs)<n>LLMs are first used to enrich user and item representations by generating semantically meaningful profiles based on metadata such as titles, genres, and overviews.<n>We evaluate our model on benchmark datasets, including MovieLens 100k and 1M, where it consistently outperforms strong baselines.
arXiv Detail & Related papers (2025-08-02T22:46:50Z) - RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning [64.46921169261852]
RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
arXiv Detail & Related papers (2025-05-28T14:55:33Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAG-Reward: Optimizing RAG with Reward Modeling and RLHF [8.911260109659489]
Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) with relevant and up-to-date knowledge.
The role of reward models in reinforcement learning for optimizing RAG remains underexplored.
We introduce textbfRAG-Reward, a framework designed to develop reward models.
arXiv Detail & Related papers (2025-01-22T22:59:19Z) - Self-Evolving Critique Abilities in Large Language Models [59.861013614500024]
This paper explores enhancing critique abilities of Large Language Models (LLMs)<n>We introduce SCRIT, a framework that trains LLMs with self-generated data to evolve their critique abilities.<n>Our analysis reveals that SCRIT's performance scales positively with data and model size.
arXiv Detail & Related papers (2025-01-10T05:51:52Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.
Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.
To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)
MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Reward-RAG: Enhancing RAG with Reward Driven Supervision [43.66966457772646]
We introduce Reward-RAG, a novel approach designed to enhance the Retrieval-Augmented Generation (RAG) model through Reward-Driven Supervision.
Unlike previous RAG methodologies, our method adapts retrieval information to specific domains by employing CriticGPT to train a dedicated reward model.
This reward model generates synthesized datasets for fine-tuning the RAG, aligning its outputs more closely with human preferences.
arXiv Detail & Related papers (2024-10-03T15:26:50Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.
Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.
It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
We build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by large language models.
We propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text.
Experimental results demonstrate the efficacy of our approach, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency.
arXiv Detail & Related papers (2023-09-08T09:39:53Z) - Preference Ranking Optimization for Human Alignment [90.6952059194946]
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values.
Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment.
We propose Preference Ranking Optimization (PRO) as an efficient SFT algorithm to fine-tune LLMs for human alignment.
arXiv Detail & Related papers (2023-06-30T09:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.