Curriculum Learning with Quality-Driven Data Selection
- URL: http://arxiv.org/abs/2407.00102v1
- Date: Thu, 27 Jun 2024 07:20:36 GMT
- Title: Curriculum Learning with Quality-Driven Data Selection
- Authors: Biao Wu, Fang Meng, Ling Chen,
- Abstract summary: OpenAI's GPT-4 has generated significant interest in the development of Multimodal Large Language Models (MLLMs)
We propose a novel data selection methodology that utilizes image-text correlation and model perplexity to evaluate and select data of varying quality.
Our research includes comprehensive experiments conducted on various datasets.
- Score: 6.045582958441303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive multimodal capabilities demonstrated by OpenAI's GPT-4 have generated significant interest in the development of Multimodal Large Language Models (MLLMs). Visual instruction tuning of MLLMs with machine-generated instruction-following data has shown to enhance zero-shot capabilities across various tasks. However, there has been limited exploration into controlling the quality of the instruction data.Current methodologies for data selection in MLLMs often rely on single, unreliable scores or use downstream tasks for selection, which is time-consuming and can lead to potential overfitting on the chosen evaluation datasets. To mitigate these limitations, we propose a novel data selection methodology that utilizes image-text correlation and model perplexity to evaluate and select data of varying quality. This approach leverages the distinct distribution of these two attributes, mapping data quality into a two-dimensional space that allows for the selection of data based on their location within this distribution. By utilizing this space, we can analyze the impact of task type settings, used as prompts, on data quality. Additionally, this space can be used to construct multi-stage subsets of varying quality to facilitate curriculum learning. Our research includes comprehensive experiments conducted on various datasets. The results emphasize substantial enhancements in five commonly assessed capabilities compared to using the complete dataset. Our codes, data, and models are publicly available at: \url{https://anonymous.4open.science/r/EHIT-31B4}
Related papers
- Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
Large Language Models (LLMs) have influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities.
We aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective.
Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application.
arXiv Detail & Related papers (2024-08-21T22:35:19Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
We introduce a novel dataset selection method, Self-Filter, for vision-language models (VLMs)
In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM.
In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity.
arXiv Detail & Related papers (2024-02-19T20:08:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.